BackFedDataAnalytics/analyticsRecord06052025.R
2025-06-10 17:14:04 +08:00

2944 lines
117 KiB
R
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

cairo_pdf("dataAnalyticsExample06052025.pdf", width = 8, height = 6,family = "SimHei" )
library(readr)
library(data.table)
library(Cairo)
library(ggplot2)
library(stringr)
library(datetime)
library(dplyr)
library(ggthemes)
#guess_encoding("historyRecord20.csv") # [[1]]$encoding
df2 <- fread("historyRecord20250604175205UTF.csv",encoding = "UTF-8",fill = TRUE)
df2$批次名称<-as.character(df2$批次名称)
df2<-df2[!is.na(df2$批次名称),]
df2$是否阳性<-df2$结论
df2$是否阳性[df2$是否阳性=="阳性"]<-1.0
df2$是否阳性[df2$是否阳性=="阴性"]<-0.0
df2$是否阳性[df2$是否阳性=="无效"]<-0.5
df2$是否阳性<-as.numeric(df2$是否阳性)
df2$是否阳性[is.na(df2$是否阳性)]<-0.5
df2$结论[df2$结论=="阳性"]<-1.0
df2$结论[df2$结论=="阴性"]<-0.0
df2$结论<-as.numeric(df2$结论)
df2$是否有效<-1
df2$是否有效[df2$是否阳性==0.5]<-0
summary(df2$结论)
summary(df2$是否阳性)
summary(df2$是否有效)
#df2$仪器序列号_批次名称<-str_c(df2$仪器序列号,'_',df2$批次名称)
colnames(df2)
#df200<-df20
summary(df2$仪器序列号)
summary(df2$批次名称)
unique(df2$批次名称)
unique(df2$仪器序列号)
unique(df2$省市编号)
unique(df2$详细地址)
unique(df2$仪器投放区域)
unique(df2$仪器备注名称)
df20<-df2 #[,c(1:11,16,17,20)]
df20$省市编号<-str_c("省市编号: ",df20$省市编号)
colnames(df20)
# df20$testTime<-str_sub(df20$测试时间,1,19)
# df20$date<-as.Date(str_sub(df20$测试时间,1,10))
# df20$time<-str_sub(df20$测试时间,12,19)
# df20$time0<-as.time(df20$time)
df20$testMonth<-str_sub(df20$测试时间,1,7)
#df20$testMonthinNumber<-as.numeric(str_c(str_sub(df20$测试时间,1,4),str_sub(df20$测试时间,6,7)))
df20$testDay<-as.Date(str_sub(df20$测试时间,1,10))
df20$testTime<-as.datetime(str_sub(df20$测试时间,1,19),format='%Y-%m-%d %H:%M:%S')
duration<-difftime(max(df20$testTime,na.rm = TRUE),min(df20$testTime,na.rm = TRUE),unit="hour")/24
df20$testTimeFromeBegining<-as.numeric(difftime(df20$testTime,min(df20$testTime,na.rm = TRUE),unit="hour")/24)
summary(df20$testTimeFromeBegining)
dayMax<-max(df20$testTimeFromeBegining)
df20<-df20[dayMax-df20$testTimeFromeBegining<730,]
#unique(df20$仪器序列号_批次名称)
df20 <- df20[order(df20$批次名称,df20$testTimeFromeBegining),]
running_avg <- function(x, window = 3) {
sapply(seq_along(x), function(i) {
start <- max(1, i - window + 1)
mean(x[start:i],na.rm=TRUE)
})
}
lumping_avg<- function(x) {
sapply(seq_along(x), function(i) {
mean(x[1:i],na.rm=TRUE)
})
}
lumping_sd<- function(x) {
sapply(seq_along(x), function(i) {
sd(x[1:i],na.rm=TRUE)
})
}
df20$浓度1<-as.numeric(df20$浓度1)
df20$C值<-as.numeric(df20$C值)
df20$T值<-as.numeric(df20$T值)
df20$ToverC值<-df20$T值/df20$C值
df20$ToverC值[df20$是否有效==0]<-NA
summary(as.numeric(df20$结论))
summary(df20$浓度1)
summary(df20$ToverC值)
summary(df20$testTimeFromeBegining)
colnames(df20)
df20 <- df20[order(df20$testTimeFromeBegining),]
df20 <- df20 %>% group_by(批次名称) %>% transform(
浓度1移动均值 = running_avg(浓度1,20),
C值移动均值 = running_avg(C值,20),
T值移动均值 = running_avg(T值,20),
ToverC值移动均值 = running_avg(ToverC值,20),
结论移动均值 = running_avg(结论,20)
)
# df20$浓度1移动均值<-running_avg(df20$浓度1, 20)
# df20$C值移动均值<-running_avg(df20$C值, 20)
# df20$T值移动均值<-running_avg(df20$T值, 20)
# df20$ToverC值移动均值<-running_avg(df20$ToverC值, 20)
# df20$结论移动均值<-running_avg(df20$结论, 20)
df20$浓度1累计均值<-lumping_avg(df20$浓度1)
df20$C值累计均值<-lumping_avg(df20$C值)
df20$T值累计均值<-lumping_avg(df20$T值)
df20$ToverC值累计均值<-lumping_avg(df20$ToverC值)
df20$结论累计均值<-lumping_avg(df20$结论)
# df20$浓度1累计标差<-lumping_sd(df20$浓度1)
# df20$C值累计标差<-lumping_sd(df20$C值)
# df20$T值累计标差<-lumping_sd(df20$T值)
# df20$ToverC值累计标差<-lumping_sd(df20$ToverC值)
# df20$结论累计标差<-lumping_sd(df20$结论移动均值)
df20$浓度1累计标差<-lumping_sd(df20$浓度1移动均值)
df20$C值累计标差<-lumping_sd(df20$C值移动均值)
df20$T值累计标差<-lumping_sd(df20$T值移动均值)
df20$ToverC值累计标差<-lumping_sd(df20$ToverC值移动均值)
df20$结论累计标差<-lumping_sd(df20$结论移动均值)
df20$浓度1允许波动范围<-df20$浓度1累计均值+2*df20$浓度1累计标差
df20$C值允许波动范围<-df20$C值累计均值+2*df20$C值累计标差
df20$T值允许波动范围<-df20$T值累计均值+2*df20$T值累计标差
df20$ToverC值允许波动范围<-df20$ToverC值累计均值+2*df20$ToverC值累计标差
df20$结论允许波动范围<-df20$结论累计均值+2*df20$结论累计标差
summary(df20$浓度1移动均值)
summary(df20$running_avg)
summary(df20$浓度1累计均值)
summary(df20$浓度1累计标差)
summary(df20$结论累计均值)
dfByDayAndLocation <- df20 %>% group_by(testDay,testMonth,省市编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
)
dfByDayAndLocation$阳性率<-dfByDayAndLocation$阳性数/dfByDayAndLocation$有效数
dfByDayAndLocation$有效率<-dfByDayAndLocation$有效数/dfByDayAndLocation$测试数
dfByDayAndLocation$阳性数<-as.integer(dfByDayAndLocation$阳性数)
dfByDayAndLocation$测试数<-as.integer(dfByDayAndLocation$测试数)
dfByDayAndLocation$有效数<-as.integer(dfByDayAndLocation$有效数)
dfByDayAndLocation <- dfByDayAndLocation[order(dfByDayAndLocation$testDay),]
lastDay<-last(dfByDayAndLocation$testDay)
dfByDayAndLocation<-dfByDayAndLocation[lastDay-dfByDayAndLocation$testDay<=21,]
dfByMonthAndLocation <- df20 %>% group_by(testMonth,省市编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
)
dfByMonthAndLocation$阳性率<-dfByMonthAndLocation$阳性数/dfByMonthAndLocation$有效数
dfByMonthAndLocation$有效率<-dfByMonthAndLocation$有效数/dfByMonthAndLocation$测试数
dfByMonthAndLocation$阳性数<-as.integer(dfByMonthAndLocation$阳性数)
dfByMonthAndLocation$测试数<-as.integer(dfByMonthAndLocation$测试数)
dfByMonthAndLocation$有效数<-as.integer(dfByMonthAndLocation$有效数)
dfByMonthAndLocation <- dfByMonthAndLocation[order(dfByMonthAndLocation$testMonth),]
dfByMonth <- df20 %>% group_by(testMonth) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
区域数=length(unique(省市编号))
)
dfByMonth$阳性率<-dfByMonth$阳性数/dfByMonth$有效数
dfByMonth$有效率<-dfByMonth$有效数/dfByMonth$测试数
dfByMonth$阳性数<-as.integer(dfByMonth$阳性数)
dfByMonth$测试数<-as.integer(dfByMonth$测试数)
dfByMonth$有效数<-as.integer(dfByMonth$有效数)
dfByMonth$区域数<-as.integer(dfByMonth$区域数)
dfByMonth <- dfByMonth[order(dfByMonth$testMonth),]
dfBy区域 <- df20 %>% group_by(省市编号) %>% summarise(
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
区域开始 = min(testTimeFromeBegining,na.rm = TRUE),
区域截止 = max(testTimeFromeBegining,na.rm = TRUE)
)
dfBy区域$阳性率<-dfBy区域$阳性数/dfBy区域$有效数
dfBy区域$有效率<-dfBy区域$有效数/dfBy区域$测试数
dfBy区域$阳性数<-as.integer(dfBy区域$阳性数)
dfBy区域$测试数<-as.integer(dfBy区域$测试数)
dfBy区域$有效数<-as.integer(dfBy区域$有效数)
dfBy批次 <- df20 %>% group_by(批次名称) %>% summarise(
仪器数=length(unique(仪器序列号)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
批次开始 = min(testTimeFromeBegining,na.rm = TRUE),
批次截止 = max(testTimeFromeBegining,na.rm = TRUE),
区域数=length(unique(省市编号))
)
dfBy批次$阳性率<-dfBy批次$阳性数/dfBy批次$有效数
dfBy批次$有效率<-dfBy批次$有效数/dfBy批次$测试数
dfBy批次$阳性数<-as.integer(dfBy批次$阳性数)
dfBy批次$测试数<-as.integer(dfBy批次$测试数)
dfBy批次$有效数<-as.integer(dfBy批次$有效数)
dfBy批次$区域数<-as.integer(dfBy批次$区域数)
dfBy仪器 <- df20 %>% group_by(仪器序列号) %>% summarise(
批次数=length(unique(批次名称)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
批次开始 = min(testTimeFromeBegining,na.rm = TRUE),
批次截止 = max(testTimeFromeBegining,na.rm = TRUE),
区域数=length(unique(省市编号))
)
dfBy仪器$阳性率<-dfBy仪器$阳性数/dfBy仪器$有效数
dfBy仪器$有效率<-dfBy仪器$有效数/dfBy仪器$测试数
dfBy仪器$阳性数<-as.integer(dfBy仪器$阳性数)
dfBy仪器$测试数<-as.integer(dfBy仪器$测试数)
dfBy仪器$有效数<-as.integer(dfBy仪器$有效数)
dfBy仪器$区域数<-as.integer(dfBy仪器$区域数)
dfByDayAndLocation测试数<-cbind("测试数",dfByDayAndLocation[,c(1:3,4)])
dfByDayAndLocation有效数<-cbind("有效数",dfByDayAndLocation[,c(1:3,6)])
dfByDayAndLocation阳性数<-cbind("阳性数",dfByDayAndLocation[,c(1:3,5)])
colnames(dfByDayAndLocation测试数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation有效数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation阳性数)<-c("group","Day","Month", "省市编号", "count")
dfByDayAndLocationNumber<-rbind(rbind(dfByDayAndLocation测试数,dfByDayAndLocation有效数),dfByDayAndLocation阳性数)
#dfByDayAndLocationNumber$省市编号<-str_c("省市编号: ",dfByDayAndLocationNumber$省市编号)
dfByDayNumber <- dfByDayAndLocationNumber %>% group_by(group,Day,Month) %>% summarise(
count=sum(count,na.rm = TRUE))
dfByDayAndLocation <- df20 %>% group_by(testDay,testMonth,省市编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
)
dfByDayAndLocation$阳性率<-dfByDayAndLocation$阳性数/dfByDayAndLocation$有效数
dfByDayAndLocation$有效率<-dfByDayAndLocation$有效数/dfByDayAndLocation$测试数
dfByDayAndLocation$阳性数<-as.integer(dfByDayAndLocation$阳性数)
dfByDayAndLocation$测试数<-as.integer(dfByDayAndLocation$测试数)
dfByDayAndLocation$有效数<-as.integer(dfByDayAndLocation$有效数)
dfByDayAndLocation <- dfByDayAndLocation[order(dfByDayAndLocation$testDay),]
lastDay<-last(dfByDayAndLocation$testDay)
dfByDayAndLocation<-dfByDayAndLocation[lastDay-dfByDayAndLocation$testDay<=21,]
dfByDay <- df20 %>% group_by(testMonth,testDay) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
区域数=length(unique(省市编号))
)
dfByDay$阳性率<-dfByDay$阳性数/dfByDay$有效数
dfByDay$有效率<-dfByDay$有效数/dfByDay$测试数
dfByDay$阳性数<-as.integer(dfByDay$阳性数)
dfByDay$测试数<-as.integer(dfByDay$测试数)
dfByDay$有效数<-as.integer(dfByDay$有效数)
dfByDay$区域数<-as.integer(dfByDay$区域数)
dfByDay <- dfByDay[order(dfByDay$testDay),]
dfByDay<-dfByDay[lastDay-dfByDay$testDay<=21,]
dfByDayAndLocation测试数<-cbind("测试数",dfByDayAndLocation[,c(1:3,4)])
dfByDayAndLocation有效数<-cbind("有效数",dfByDayAndLocation[,c(1:3,6)])
dfByDayAndLocation阳性数<-cbind("阳性数",dfByDayAndLocation[,c(1:3,5)])
colnames(dfByDayAndLocation测试数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation有效数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation阳性数)<-c("group","Day","Month", "省市编号", "count")
dfByDayAndLocationNumber<-rbind(rbind(dfByDayAndLocation测试数,dfByDayAndLocation有效数),dfByDayAndLocation阳性数)
#dfByDayAndLocationNumber$省市编号<-str_c("省市编号: ",dfByDayAndLocationNumber$省市编号)
dfByDayNumber <- dfByDayAndLocationNumber %>% group_by(group,Day,Month) %>% summarise(
count=sum(count,na.rm = TRUE))
dfByDayAndLocation有效率<-cbind("有效率",dfByDayAndLocation[,c(1,2,3,10)])
dfByDayAndLocation阳性率<-cbind("阳性率",dfByDayAndLocation[,c(1,2,3,9)])
colnames(dfByDayAndLocation有效率)<-c("group","Day","Month", "省市编号", "Ratio")
colnames(dfByDayAndLocation阳性率)<-c("group","Day","Month", "省市编号", "Ratio")
dfByDayAndLocationRatio<-rbind(dfByDayAndLocation有效率,dfByDayAndLocation阳性率)
#dfByDayAndLocationRatio$省市编号<-str_c("省市编号: ",dfByDayAndLocationRatio$省市编号)
dfByDay有效率<-cbind("有效率",dfByDay[,c(1,2,10)])
dfByDay阳性率<-cbind("阳性率",dfByDay[,c(1,2,9)])
colnames(dfByDay有效率)<-c("group","Month","Day","Ratio")
colnames(dfByDay阳性率)<-c("group","Month","Day","Ratio")
dfByDayRatio<-rbind(dfByDay有效率,dfByDay阳性率)
dfByDayAndLocation仪器数<-cbind("仪器数",dfByDayAndLocation[,c(1,2,3,7)])
dfByDayAndLocation批次数<-cbind("批次数",dfByDayAndLocation[,c(1,2,3,8)])
colnames(dfByDayAndLocation仪器数)<-c("group","Day","Month", "省市编号", "Count")
colnames(dfByDayAndLocation批次数)<-c("group","Day","Month", "省市编号", "Count")
dfByDayAndLocationCount<-rbind(dfByDayAndLocation仪器数,dfByDayAndLocation批次数)
#dfByDayAndLocationCount$省市编号<-str_c("省市编号: ",dfByDayAndLocationCount$省市编号)
dfByDay仪器数<-cbind("仪器数",dfByDay[,c(1,2,6)])
dfByDay批次数<-cbind("批次数",dfByDay[,c(1,2,7)])
dfByDay区域数<-cbind("区域数",dfByDay[,c(1,2,8)])
colnames(dfByDay仪器数)<-c("group","Month","Day","count")
colnames(dfByDay批次数)<-c("group","Month","Day","count")
colnames(dfByDay区域数)<-c("group","Month","Day","count")
dfByDayCount<-rbind(rbind(dfByDay仪器数,dfByDay批次数),dfByDay区域数)
dfByMonthAndLocation测试数<-cbind("测试数",dfByMonthAndLocation[,c(1,2,3)])
dfByMonthAndLocation有效数<-cbind("有效数",dfByMonthAndLocation[,c(1,2,5)])
dfByMonthAndLocation阳性数<-cbind("阳性数",dfByMonthAndLocation[,c(1,2,4)])
colnames(dfByMonthAndLocation测试数)<-c("group","month","省市编号", "count")
colnames(dfByMonthAndLocation有效数)<-c("group","month","省市编号", "count")
colnames(dfByMonthAndLocation阳性数)<-c("group","month","省市编号", "count")
dfByMonthAndLocationNumber<-rbind(rbind(dfByMonthAndLocation测试数,dfByMonthAndLocation有效数),dfByMonthAndLocation阳性数)
#dfByMonthAndLocationNumber$省市编号<-str_c("省市编号: ",dfByMonthAndLocationNumber$省市编号)
dfByMonthNumber <- dfByMonthAndLocationNumber %>% group_by(group,month) %>% summarise(
count=sum(count,na.rm = TRUE))
dfByMonthAndLocation有效率<-cbind("有效率",dfByMonthAndLocation[,c(1,2,9)])
dfByMonthAndLocation阳性率<-cbind("阳性率",dfByMonthAndLocation[,c(1,2,8)])
colnames(dfByMonthAndLocation有效率)<-c("group","month","省市编号", "Ratio")
colnames(dfByMonthAndLocation阳性率)<-c("group","month","省市编号", "Ratio")
dfByMonthAndLocationRatio<-rbind(dfByMonthAndLocation有效率,dfByMonthAndLocation阳性率)
#dfByMonthAndLocationRatio$省市编号<-str_c("省市编号: ",dfByMonthAndLocationRatio$省市编号)
dfByMonth有效率<-cbind("有效率",dfByMonth[,c(1,9)])
dfByMonth阳性率<-cbind("阳性率",dfByMonth[,c(1,8)])
colnames(dfByMonth有效率)<-c("group","month","Ratio")
colnames(dfByMonth阳性率)<-c("group","month","Ratio")
dfByMonthRatio<-rbind(dfByMonth有效率,dfByMonth阳性率)
dfByMonthAndLocation仪器数<-cbind("仪器数",dfByMonthAndLocation[,c(1,2,6)])
dfByMonthAndLocation批次数<-cbind("批次数",dfByMonthAndLocation[,c(1,2,7)])
colnames(dfByMonthAndLocation仪器数)<-c("group","month","省市编号", "Count")
colnames(dfByMonthAndLocation批次数)<-c("group","month","省市编号", "Count")
dfByMonthAndLocationCount<-rbind(dfByMonthAndLocation仪器数,dfByMonthAndLocation批次数)
#dfByMonthAndLocationCount$省市编号<-str_c("省市编号: ",dfByMonthAndLocationCount$省市编号)
dfByMonth仪器数<-cbind("仪器数",dfByMonth[,c(1,5)])
dfByMonth批次数<-cbind("批次数",dfByMonth[,c(1,6)])
dfByMonth区域数<-cbind("区域数",dfByMonth[,c(1,7)])
colnames(dfByMonth仪器数)<-c("group","month","count")
colnames(dfByMonth批次数)<-c("group","month","count")
colnames(dfByMonth区域数)<-c("group","month","count")
dfByMonthCount<-rbind(rbind(dfByMonth仪器数,dfByMonth批次数),dfByMonth区域数)
dfby区域Number <- dfByMonthAndLocationNumber %>% group_by(group,省市编号) %>% summarise(
count=sum(count,na.rm = TRUE))
dfBy区域有效率<-cbind("有效率",dfBy区域[,c(1,10)])
dfBy区域阳性率<-cbind("阳性率",dfBy区域[,c(1,9)])
colnames(dfBy区域有效率)<-c("group","区域","Ratio")
colnames(dfBy区域阳性率)<-c("group","区域","Ratio")
dfBy区域Ratio<-rbind(dfBy区域有效率,dfBy区域阳性率)
#dfBy区域Ratio$区域<-str_c("省市编号: ",dfBy区域Ratio$区域)
dfBy区域仪器数<-cbind("仪器数",dfBy区域[,c(1,2)])
dfBy区域批次数<-cbind("批次数",dfBy区域[,c(1,3)])
colnames(dfBy区域仪器数)<-c("group","区域","count")
colnames(dfBy区域批次数)<-c("group","区域","count")
dfBy区域Count<-rbind(dfBy区域仪器数,dfBy区域批次数)
#dfBy区域Count$区域<-str_c("省市编号: ",dfBy区域Count$区域)
dfBy区域开始<-cbind("区域开始",dfBy区域[,c(1,7)])
dfBy区域截止<-cbind("区域截止",dfBy区域[,c(1,8)])
colnames(dfBy区域开始)<-c("group","区域","time")
colnames(dfBy区域截止)<-c("group","区域","time")
dfBy区域time<-rbind(dfBy区域开始,dfBy区域截止)
#dfBy区域time$区域<-str_c("省市编号: ",dfBy区域time$区域)
dfBy批次测试数<-cbind("测试数",dfBy批次[,c(1,3)])
dfBy批次有效数<-cbind("有效数",dfBy批次[,c(1,5)])
dfBy批次阳性数<-cbind("阳性数",dfBy批次[,c(1,4)])
colnames(dfBy批次测试数)<-c("group","批次","count")
colnames(dfBy批次有效数)<-c("group","批次","count")
colnames(dfBy批次阳性数)<-c("group","批次","count")
dfBy批次Number<-rbind(dfBy批次测试数,rbind(dfBy批次有效数,dfBy批次阳性数))
dfBy批次有效率<-cbind("有效率",dfBy批次[,c(1,10)])
dfBy批次阳性率<-cbind("阳性率",dfBy批次[,c(1,9)])
colnames(dfBy批次有效率)<-c("group","批次","Ratio")
colnames(dfBy批次阳性率)<-c("group","批次","Ratio")
dfBy批次Ratio<-rbind(dfBy批次有效率,dfBy批次阳性率)
dfBy批次仪器数<-cbind("仪器数",dfBy批次[,c(1,2)])
dfBy批次区域数<-cbind("区域数",dfBy批次[,c(1,8)])
colnames(dfBy批次仪器数)<-c("group","批次","count")
colnames(dfBy批次区域数)<-c("group","批次","count")
dfBy批次Count<-rbind(dfBy批次仪器数,dfBy批次区域数)
dfBy批次开始<-cbind("批次开始",dfBy批次[,c(1,6)])
dfBy批次截止<-cbind("批次截止",dfBy批次[,c(1,7)])
colnames(dfBy批次开始)<-c("group","批次","time")
colnames(dfBy批次截止)<-c("group","批次","time")
dfBy批次time<-rbind(dfBy批次开始,dfBy批次截止)
dfBy仪器测试数<-cbind("测试数",dfBy仪器[,c(1,3)])
dfBy仪器有效数<-cbind("有效数",dfBy仪器[,c(1,5)])
dfBy仪器阳性数<-cbind("阳性数",dfBy仪器[,c(1,4)])
colnames(dfBy仪器测试数)<-c("group","仪器","count")
colnames(dfBy仪器有效数)<-c("group","仪器","count")
colnames(dfBy仪器阳性数)<-c("group","仪器","count")
dfBy仪器Number<-rbind(dfBy仪器测试数,rbind(dfBy仪器有效数,dfBy仪器阳性数))
dfBy仪器有效率<-cbind("有效率",dfBy仪器[,c(1,10)])
dfBy仪器阳性率<-cbind("阳性率",dfBy仪器[,c(1,9)])
colnames(dfBy仪器有效率)<-c("group","仪器","Ratio")
colnames(dfBy仪器阳性率)<-c("group","仪器","Ratio")
dfBy仪器Ratio<-rbind(dfBy仪器有效率,dfBy仪器阳性率)
dfBy仪器批次数<-cbind("批次数",dfBy仪器[,c(1,2)])
dfBy仪器区域数<-cbind("区域数",dfBy仪器[,c(1,8)])
colnames(dfBy仪器批次数)<-c("group","仪器","count")
colnames(dfBy仪器区域数)<-c("group","仪器","count")
dfBy仪器Count<-rbind(dfBy仪器批次数,dfBy仪器区域数)
dfBy仪器开始<-cbind("仪器开始",dfBy仪器[,c(1,6)])
dfBy仪器截止<-cbind("仪器截止",dfBy仪器[,c(1,7)])
colnames(dfBy仪器开始)<-c("group","仪器","time")
colnames(dfBy仪器截止)<-c("group","仪器","time")
dfBy仪器time<-rbind(dfBy仪器开始,dfBy仪器截止)
dfBy区域top4<-dfBy区域$省市编号[order(-dfBy区域$测试数)][1:4]
dfBy区域top4<-dfBy区域top4[!is.na(dfBy区域top4)]
dfBy批次top4<-dfBy批次$批次名称[order(-dfBy批次$测试数)][1:4]
dfBy批次top4<-dfBy批次top4[!is.na(dfBy批次top4)]
dfBy仪器top4<-dfBy仪器$仪器序列号[order(-dfBy仪器$测试数)][1:4]
dfBy仪器top4<-dfBy仪器top4[!is.na(dfBy仪器top4)]
df20Top4区域<-df20[df20$省市编号 %in% dfBy区域top4,]
df20Top4批次<-df20[df20$批次名称 %in% dfBy批次top4,]
df20Top4仪器<-df20[df20$仪器序列号 %in% dfBy仪器top4,]
df20Top4区域$省市编号<-factor(df20Top4区域$省市编号,levels = dfBy区域top4)
df20Top4批次$批次名称<-factor(df20Top4批次$批次名称,levels = dfBy批次top4)
df20Top4仪器$仪器序列号<-factor(df20Top4仪器$仪器序列号,levels = dfBy仪器top4)
dfByDayAndLocationNumber<-dfByDayAndLocationNumber[dfByDayAndLocationNumber$省市编号 %in% dfBy区域top4,]
dfByDayAndLocationNumber$省市编号<-factor(dfByDayAndLocationNumber$省市编号,levels = dfBy区域top4)
dfByDayAndLocationCount<-dfByDayAndLocationCount[dfByDayAndLocationCount$省市编号 %in% dfBy区域top4,]
dfByDayAndLocationCount$省市编号<-factor(dfByDayAndLocationCount$省市编号,levels = dfBy区域top4)
dfByDayAndLocationRatio<-dfByDayAndLocationRatio[dfByDayAndLocationRatio$省市编号 %in% dfBy区域top4,]
dfByDayAndLocationRatio$省市编号<-factor(dfByDayAndLocationRatio$省市编号,levels = dfBy区域top4)
dfByMonthAndLocationRatio<-dfByMonthAndLocationRatio[dfByMonthAndLocationRatio$省市编号 %in% dfBy区域top4,]
dfByMonthAndLocationRatio$省市编号<-factor(dfByMonthAndLocationRatio$省市编号,levels = dfBy区域top4)
dfByMonthAndLocationCount<-dfByMonthAndLocationCount[dfByMonthAndLocationCount$省市编号 %in% dfBy区域top4,]
dfByMonthAndLocationCount$省市编号<-factor(dfByMonthAndLocationCount$省市编号,levels = dfBy区域top4)
dfByMonthAndLocationNumber<-dfByMonthAndLocationNumber[dfByMonthAndLocationNumber$省市编号 %in% dfBy区域top4,]
dfByMonthAndLocationNumber$省市编号<-factor(dfByMonthAndLocationNumber$省市编号,levels = dfBy区域top4)
#dfByDayNumber1<-dfByDayNumber[dfByDayNumber$Month=="2024-09",]
plotdfByDayNumber<-ggplot(dfByDayNumber, aes(x = Day, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "最后三周按日测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByDayNumber
plotdfByDayLocationNumber<-ggplot(dfByDayAndLocationNumber, aes(x = Day, y = count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "最后三周按日按地区测试统计",
x = "测试时间",
y = "数值统计",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByDayLocationNumber
plotdfByDayRatio<-ggplot(dfByDayRatio, aes(x = Day, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=Ratio),vjust=1.6,size=1,color="white")+
labs(
title = "最后三周按日测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByDayRatio
plotdfByDayLocationRatio<-ggplot(dfByDayAndLocationRatio, aes(x = Day, y = Ratio, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "最后三周按日按地区测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByDayLocationRatio
plotdfByDayCount<-ggplot(dfByDayCount, aes(x = Day, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "最后三周按日测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByDayCount
plotdfByDayLocationCount<-ggplot(dfByDayAndLocationCount, aes(x = Day, y = Count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = Count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "最后三周按日按地区统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByDayLocationCount
plotdfByMonthNumber<-ggplot(dfByMonthNumber, aes(x = month, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = "每月测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByMonthNumber
plotdfByMonthLocationNumber<-ggplot(dfByMonthAndLocationNumber, aes(x = month, y = count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "每月分区测试统计",
x = "测试时间",
y = "数值统计",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByMonthLocationNumber
plotdfByMonthRatio<-ggplot(dfByMonthRatio, aes(x = month, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=Ratio),vjust=1.6,size=1,color="white")+
labs(
title = "每月测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByMonthRatio
plotdfByMonthLocationRatio<-ggplot(dfByMonthAndLocationRatio, aes(x = month, y = Ratio, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "每月分区测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByMonthLocationRatio
plotdfByMonthCount<-ggplot(dfByMonthCount, aes(x = month, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "每月测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByMonthCount
plotdfByMonthLocationCount<-ggplot(dfByMonthAndLocationCount, aes(x = month, y = Count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = Count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "每月分区测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByMonthLocationCount
plotdfby区域Number<-ggplot(dfby区域Number, aes(x = 省市编号, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "分区测试统计",
x = "测试区域",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfby区域Number
plotdfBy区域Ratio<-ggplot(dfBy区域Ratio, aes(x = 区域, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "分区测试统计",
x = "测试区域",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy区域Ratio
plotdfBy区域Count<-ggplot(dfBy区域Count, aes(x = 区域, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "分区测试统计",
x = "测试区域",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy区域Count
if(FALSE) {
plotdfBy区域timeBox <- ggplot(df20, aes(x=省市编号, y=testDay,color=省市编号)) +
geom_boxplot(show.legend = FALSE)+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "分区测试时间统计",
x = "测试区域",
y = "测试时间",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy区域timeBox
}
plotdfBy批次Number<-ggplot(dfBy批次Number, aes(x = 批次, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = "试剂分批测试统计",
x = "测试批次",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次Number
plotdfBy批次Ratio<-ggplot(dfBy批次Ratio, aes(x = 批次, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "试剂分批测试统计",
x = "测试批次",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次Ratio
plotdfBy批次Count<-ggplot(dfBy批次Count, aes(x = 批次, y = count, fill = group)) +
# geom_bar(stat="identity",区域
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.6, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "试剂分批测试统计",
x = "测试批次",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次Count
plotdfBy批次timeBox <- ggplot(df20, aes(x=批次名称, y=testDay,color=批次名称)) +
geom_boxplot(show.legend = FALSE)+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "试剂分批时间统计",
x = "批次名称",
y = "测试时间",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次timeBox
plotdfBy仪器Number<-ggplot(dfBy仪器Number, aes(x = 仪器, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "仪器测试统计",
x = "测试仪器",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器Number
plotdfBy仪器Ratio<-ggplot(dfBy仪器Ratio, aes(x = 仪器, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "仪器测试统计",
x = "测试仪器",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器Ratio
plotdfBy仪器Count<-ggplot(dfBy仪器Count, aes(x = 仪器, y = count, fill = group)) +
# geom_bar(stat="identity",区域
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "仪器测试统计",
x = "测试仪器",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器Count
plotdfBy仪器timeBox <- ggplot(df20, aes(x=仪器序列号, y=testDay,color=仪器序列号)) +
geom_boxplot(show.legend = FALSE)+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "仪器测试时间统计",
x = "仪器名称/序列号",
y = "测试时间",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器timeBox
plot浓度1批次Box <- ggplot(df20, aes(x=批次名称, y=浓度1,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "浓度与试剂批次关系统计",
x = "批次名称",
y = "浓度1",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot浓度1批次Box
plot浓度1仪器Box <- ggplot(df20, aes(x=仪器序列号, y=浓度1,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "浓度与仪器关系统计",
x = "仪器名称/序列号",
y = "浓度1",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot浓度1仪器Box
plotC值批次Box <- ggplot(df20, aes(x=批次名称, y=C值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "C值与试剂批次关系统计",
x = "批次名称",
y = "C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotC值批次Box
plotC值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=C值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "C值与仪器关系统计",
x = "仪器名称/序列号",
y = "C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotC值仪器Box
plotT值批次Box <- ggplot(df20, aes(x=批次名称, y=T值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T值与试剂批次关系统计",
x = "批次名称",
y = "T值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotT值批次Box
plotT值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=T值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T值与仪器关系统计",
x = "仪器名称/序列号",
y = "T值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotT值仪器Box
plotToverC值批次Box <- ggplot(df20, aes(x=批次名称, y=ToverC值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T/C值与试剂批次关系统计",
x = "批次名称",
y = "T/C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotToverC值批次Box
plotToverC值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=ToverC值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T/C值与仪器关系统计",
x = "仪器名称/序列号",
y = "T/C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotToverC值仪器Box
plot结论移动均值批次Box <- ggplot(df20, aes(x=批次名称, y=结论移动均值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "阳性率与试剂批次关系统计",
x = "批次名称",
y = "结论移动均值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot结论移动均值批次Box
plot结论移动均值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=结论移动均值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "阳性率与仪器关系统计",
x = "仪器名称/序列号",
y = "结论移动均值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot结论移动均值仪器Box
xmin<-min(df20$testDay)
xmax<-max(df20$testDay)
ymax<-max(6,quantile(df20$浓度1,probs = 0.95, # 要计算的百分位0-1之间
na.rm = TRUE))
plot浓度1by批次 <- ggplot(df20)+geom_point(aes(testDay, 浓度1,color=as.character(批次名称)))+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "浓度", # 主标题
x = "测试日期", # X轴标签
y = "浓度1", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot浓度1by批次
plot浓度1批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "浓度与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1批次
plot浓度1by省市编号 <- ggplot(df20)+geom_point(aes(testDay, 浓度1,color=as.character(省市编号)))+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "浓度", # 主标题
x = "测试日期", # X轴标签
y = "浓度1", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot浓度1by省市编号
plot浓度1省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "浓度与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1省市编号
ymax<-max(6,quantile(df20$浓度1,probs = 0.95, # 要计算的百分位0-1之间
na.rm = TRUE))
plot浓度1by仪器 <- ggplot(df20)+geom_point(aes(testDay, 浓度1,color=as.character(仪器序列号)))+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "浓度", # 主标题
x = "测试日期", # X轴标签
y = "浓度1", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot浓度1by仪器
plot浓度1仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "浓度与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1仪器
ymax<-max(6,quantile(df20$C值,probs = 0.98, # 要计算的百分位0-1之间
na.rm = TRUE))
plotC值by批次 <- ggplot(df20)+geom_point(aes(testDay, C值,color=as.character(批次名称)))+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
scale_y_log10()+
labs(
title = "C值", # 主标题
x = "测试日期", # X轴标签
y = "C值", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotC值by批次
plotC值批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
scale_y_log10()+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值批次
plotC值by省市编号 <- ggplot(df20)+geom_point(aes(testDay, C值,color=as.character(省市编号)))+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "C值", # 主标题
x = "测试日期", # X轴标签
y = "C值", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotC值by省市编号
plotC值省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值省市编号
plotC值by仪器 <- ggplot(df20)+geom_point(aes(testDay, C值,color=as.character(仪器序列号)))+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "C值", # 主标题
x = "测试日期", # X轴标签
y = "C值", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotC值by仪器
plotC值仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值仪器
ymax<-max(6,quantile(df20$T值,probs = 0.98, # 要计算的百分位0-1之间
na.rm = TRUE))
plotT值by批次 <- ggplot(df20)+geom_point(aes(testDay, T值,color=as.character(批次名称)))+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T值", # 主标题
x = "测试日期", # X轴标签
y = "T值", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotT值by批次
plotT值批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值批次
plotT值by省市编号 <- ggplot(df20)+geom_point(aes(testDay, T值,color=as.character(省市编号)))+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T值", # 主标题
x = "测试日期", # X轴标签
y = "T值", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotT值by省市编号
plotT值省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值省市编号
plotT值by仪器 <- ggplot(df20)+geom_point(aes(testDay, T值,color=as.character(仪器序列号)))+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T值", # 主标题
x = "测试日期", # X轴标签
y = "T值", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotT值by仪器
plotT值仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值仪器
ymax<-max(6,quantile(df20$ToverC值,probs = 0.98, # 要计算的百分位0-1之间
na.rm = TRUE))
plotToverC值by批次 <- ggplot(df20)+geom_point(aes(testDay, ToverC值,color=as.character(批次名称)))+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T/C值", # 主标题
x = "测试日期", # X轴标签
y = "T/C值", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotToverC值by批次
plotToverC值批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T/C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值批次
plotToverC值by省市编号 <- ggplot(df20)+geom_point(aes(testDay, ToverC值,color=as.character(省市编号)))+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T/C值", # 主标题
x = "测试日期", # X轴标签
y = "T/C值", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotToverC值by省市编号
plotToverC值省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T/C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值省市编号
plotToverC值by仪器 <- ggplot(df20)+geom_point(aes(testDay, ToverC值,color=as.character(仪器序列号)))+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T/C值", # 主标题
x = "测试日期", # X轴标签
y = "T/C值", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotToverC值by仪器
plotToverC值仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T/C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值仪器
ymax<-1.0
plot结论by批次 <- ggplot(df20)+geom_point(aes(testDay, 是否阳性,color=as.character(批次名称)))+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "结论/阳性率", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot结论by批次
plot结论批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "结论/阳性率与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论批次
plot结论by省市编号 <- ggplot(df20)+geom_point(aes(testDay, 是否阳性,color=as.character(省市编号)))+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "结论/阳性率", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot结论by省市编号
plot结论省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "结论/阳性率与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论省市编号
plot结论by仪器 <- ggplot(df20)+geom_point(aes(testDay, 是否阳性,color=as.character(仪器序列号)))+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "结论/阳性率", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot结论by仪器
plot结论仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "结论/阳性率与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论仪器
df20$结论Outlier<-1
df20$结论Outlier[df20$结论允许波动范围-df20$结论移动均值>0 &
df20$结论移动均值-(df20$结论累计均值-2*df20$结论累计标差)>0]<-0
df20$结论Outlier[is.na(df20$结论累计标差)]<-NA
summary(df20$结论Outlier)
dfBy批次Outlier <- df20 %>% group_by(批次名称) %>% summarise(
outlierCount=sum(结论Outlier,na.rm=TRUE))
dfBy批次Outliertop4<-dfBy批次Outlier$批次名称[order(-dfBy批次Outlier$outlierCount)][1:4]
dfBy批次Outliertop4<-dfBy批次Outliertop4[!is.na(dfBy批次Outliertop4)]
df20Top4批次Outlier<-df20[df20$批次名称 %in% dfBy批次Outliertop4,]
df20Top4批次Outlier$批次名称<-factor(df20Top4批次Outlier$批次名称,levels = dfBy批次Outliertop4)
plot浓度1批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "浓度与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1批次Outlier
plotC值批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值批次Outlier
plotT值批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值批次Outlier
plotToverC值批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T/C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值批次Outlier
plot结论批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "结论/阳性率与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论批次Outlier
if(FALSE){
dfBy区域Outlier <- df20 %>% group_by(省市编号) %>% summarise(
outlierCount=sum(结论Outlier,na.rm=TRUE))
dfBy区域Outliertop4<-dfBy区域Outlier$省市编号[order(-dfBy区域Outlier$outlierCount)][1:4]
dfBy区域Outliertop4<-dfBy区域Outliertop4[!is.na(dfBy区域Outliertop4)]
df20Top4区域Outlier<-df20[df20$省市编号 %in% dfBy区域Outliertop4,]
df20Top4区域Outlier$省市编号<-factor(df20Top4区域Outlier$省市编号,levels = dfBy区域Outliertop4)
plot浓度1区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "浓度与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1区域Outlier
plotC值区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值区域Outlier
plotT值区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值区域Outlier
plotToverC值区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T/C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值区域Outlier
plot结论区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "结论/阳性率与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论区域Outlier
}
if(FALSE){
dfBy仪器Outlier <- df20 %>% group_by(仪器序列号) %>% summarise(
outlierCount=sum(结论Outlier,na.rm=TRUE))
dfBy仪器Outliertop4<-dfBy仪器Outlier$仪器序列号[order(-dfBy仪器Outlier$outlierCount)][1:4]
dfBy仪器Outliertop4<-dfBy仪器Outliertop4[!is.na(dfBy仪器Outliertop4)]
df20Top4仪器Outlier<-df20[df20$仪器序列号 %in% dfBy仪器Outliertop4,]
df20Top4仪器Outlier$仪器序列号<-factor(df20Top4仪器Outlier$仪器序列号,levels = dfBy仪器Outliertop4)
plot浓度1仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "浓度与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1仪器Outlier
plotC值仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值仪器Outlier
plotT值仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值仪器Outlier
plotToverC值仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T/C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值仪器Outlier
plot结论仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "结论/阳性率与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论仪器Outlier
}
dev.off()