BackFedDataAnalytics/analyticsRecord07112025.R
2025-07-11 16:01:34 +08:00

2151 lines
108 KiB
R
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

library(readr)
#library(data.table)
library(Cairo)
library(ggplot2)
library(stringi)
library(stringr)
library(datetime)
library(dplyr)
library(ggthemes)
library(RMySQL)
plotfunction<- function(dfData,independentVariableName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionVector仪器序列号<- function(ik,independentVariableList,dfData,independentVariableName,dependentVariableNames,titleNames) {
dfData<-dfData[(dfData$仪器序列号 %in% c(independentVariableList[independentVariableList[,2]==ik,][,1])),]
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionVector批次名称<- function(ik,independentVariableList,dfData,independentVariableName,dependentVariableNames,titleNames) {
dfData<-dfData[(dfData$批次名称 %in% c(independentVariableList[independentVariableList[,2]==ik,][,1])),]
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionVector批次名称Log<- function(ik,independentVariableList,dfData,independentVariableName,dependentVariableNames,titleNames) {
dfData<-dfData[(dfData$批次名称 %in% c(independentVariableList[independentVariableList[,2]==ik,][,1])),]
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionVector项目名称<- function(ik,independentVariableList,dfData,independentVariableName,dependentVariableNames,titleNames) {
dfData<-dfData[(dfData$项目名称 %in% c(independentVariableList[independentVariableList[,2]==ik,][,1])),]
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionVector项目名称Log<- function(ik,independentVariableList,dfData,independentVariableName,dependentVariableNames,titleNames) {
dfData<-dfData[(dfData$项目名称 %in% c(independentVariableList[independentVariableList[,2]==ik,][,1])),]
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionLog<- function(dfData,independentVariableName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionVector仪器序列号Log<- function(ik,independentVariableList,dfData,independentVariableName,dependentVariableNames,titleNames) {
dfData<-dfData[(dfData$仪器序列号 %in% c(independentVariableList[independentVariableList[,2]==ik,][,1])),]
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = dfData00[,2], y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
panelPlotByDayAndLocation<- function(dfData,choosenList,independentVariableName,panelName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,panelName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,panelName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
dfData00<-dfData00[dfData00$省编号 %in% choosenList,]
dfData00$省编号<-factor(dfData00$省编号,levels = choosenList)
plot1<-ggplot(dfData00, aes(x = testDay, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省编号,ncol=2) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot1
}
panelPlotByMonthAndLocation<- function(dfData,choosenList,independentVariableName,panelName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,panelName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,panelName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
dfData00<-dfData00[dfData00$省编号 %in% choosenList,]
dfData00$省编号<-factor(dfData00$省编号,levels = choosenList)
plot1<-ggplot(dfData00, aes(x = testMonth, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省编号,ncol=2) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot1
}
panelPlotByDayAnd细胞<- function(dfData,choosenList,independentVariableName,panelName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,panelName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,panelName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
dfData00<-dfData00[dfData00$区域 %in% choosenList,]
dfData00$区域<-factor(dfData00$区域,levels = choosenList)
plot1<-ggplot(dfData00, aes(x = testDay, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 区域,ncol=2) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot1
}
panelPlotByMonthAnd细胞<- function(dfData,choosenList,independentVariableName,panelName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,panelName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,panelName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
dfData00<-dfData00[dfData00$区域 %in% choosenList,]
dfData00$区域<-factor(dfData00$区域,levels = choosenList)
plot1<-ggplot(dfData00, aes(x = testMonth, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 区域,ncol=2) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot1
}
pointPlotfunction批次<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(批次名称)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction批次Log<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(批次名称)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction仪器<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(仪器序列号)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction仪器Log<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(仪器序列号)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction样本<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(样本类型)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction样本Log<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(样本类型)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction项目<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(项目名称)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
pointPlotfunction项目Log<- function(dfData,independentVariableName,dependentVariableName,titleNames) {
plot2 <- ggplot(df20Ploted)+geom_point(aes(dfData[,independentVariableName], dfData[,dependentVariableName],color=as.character(项目名称)))+
# geom_line(aes(testDay,浓度1移动均值),color="blue")+
# geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
# geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
# xlim(xmin, xmax) + ylim(ymin, ymax)+theme(legend.position ="right")+
labs(
title = titleNames[1], # 主标题
x = titleNames[2], # X轴标签
y = titleNames[3], # Y轴标签
color = titleNames[4] # 图例标题
)+
# scale_x_date(
# date_labels = "%Y-%m-%d", # 格式符组合
# date_breaks = "1 month" # 标签间隔(如 "2 weeks"
# )+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot2
}
plotfunctionByDay<- function(dfData,independentVariableName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = testDay, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionBy区域<- function(dfData,independentVariableName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = 省编号, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionBy仪器<- function(dfData,independentVariableName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = 仪器序列号, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
plotfunctionBy仪器Log<- function(dfData,independentVariableName,dependentVariableNames,titleNames) {
lth1<-length(dependentVariableNames)
dfData00<-data.frame()
for(i in 1:lth1){
dfData0<-cbind(dependentVariableNames[i],dfData[,c(independentVariableName,dependentVariableNames[i])])
colnames(dfData0)<-c("Group",c(independentVariableName,"Count"))
dfData00<-rbind(dfData00,dfData0)
}
plot1<-ggplot(dfData00, aes(x = 仪器序列号, y = Count, fill = Group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = Group, color = Group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
geom_text(
aes(label = round(Count,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = titleNames[1],
x = titleNames[2],
y = titleNames[3],
fill = titleNames[4]
) +
scale_fill_manual(values = c("red", "blue","green","yellow")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot1
#return (list(plotdfDataNumber,b23,b33,b43,b53))
}
running_avg <- function(x, window = 3) {
sapply(seq_along(x), function(i) {
start <- max(1, i - window + 1)
mean(x[start:i],na.rm=TRUE)
})
}
lumping_avg<- function(x,window = 100) {
sapply(seq_along(x), function(i) {
start <- max(1, i - window + 1)
mean(x[start:i],na.rm=TRUE)
})
}
lumping_sd<- function(x,window = 100) {
sapply(seq_along(x), function(i) {
start <- max(1, i - window + 1)
sd(x[start:i],na.rm=TRUE)
})
}
rep6<-rep(1,6)
rep50<-rep(1,50)
rep0<-rep6
for(i in 1:1000) rep0<-c(rep0,rep6+i)
rep00<-rep50
for(i in 1:100) rep00<-c(rep00,rep50+i)
if(FALSE){
csv_files <- list.files(pattern = "\\UTF.csv$")
df00<-data.frame()
for(i in 1:length(csv_files)) {
#guess_encoding("historyRecord20.csv") # [[1]]$encoding
#df2 <- fread("historyRecord20250604175205UTF.csv",encoding = "UTF-8",fill = TRUE)
# df22 <- read.csv(csv_files[i],encoding = "UTF-8",fill = TRUE)
# colnames(df22)
# summary(df22)
df2 <- read.csv(csv_files[i],encoding = "UTF-8",fill = TRUE)
df2$批次名称<-as.character(df2$批次名称)
df2<-df2[!is.na(df2$批次名称),]
df2$是否阳性<-df2$结论
df2$是否阳性[df2$是否阳性=="阳性"]<-1.0
df2$是否阳性[df2$是否阳性=="阴性"]<-0.0
df2$是否阳性[df2$是否阳性=="无效"]<-0.5
df2$是否阳性<-as.numeric(df2$是否阳性)
df2$是否阳性[is.na(df2$是否阳性)]<-0.5
df2$结论[df2$结论=="阳性"]<-1.0
df2$结论[df2$结论=="阴性"]<-0.0
df2$结论<-as.numeric(df2$结论)
df2$是否有效<-1
df2$是否有效[df2$是否阳性==0.5]<-0
df00<-rbind(df00,df2)
}
write_excel_csv(df00,file="history06092025.csv")
df2<-df00
}
if(FALSE){
series<-read.csv("荧光层析设备1.csv",encoding = "UTF-8",fill = TRUE)
series1<-read.csv("FIC-Q100N.csv",encoding = "UTF-8",fill = TRUE)
series0<-series$仪器序列号[series$仪器序列号 %in% 仪器号List$仪器序列号]
series00<-series$仪器编号[series$仪器编号 %in% series1$仪器编号]
colnames(series[,1:13])
colnames(series1[,3:11])
仪器编号和序列号<-merge(series[,1:13],series1[,3:11],by="仪器编号",all=FALSE)
#仪器编号和序列号all<-merge(series[,1:13],series1[,3:11],by="仪器编号",all=TRUE)
colnames(仪器编号和序列号)
仪器编号和序列号$SIM卡号<- gsub("\t", " ", 仪器编号和序列号$SIM卡号)
仪器编号和序列号$返利表序号<- gsub("\n", "_", 仪器编号和序列号$返利表序号)
#仪器编号和序列号all$SIM卡号<- gsub("\t", " ", 仪器编号和序列号all$SIM卡号)
#仪器编号和序列号all$返利表序号<- gsub("\n", "_", 仪器编号和序列号all$返利表序号)
#仪器编号和序列号[仪器编号和序列号$仪器序列号=="781be43bb68f05bb",]
cname0<-c("仪器编号" , "仪器序列号" ,
"SIM卡号" , "发货时间" , "仪器类型" ,
"总测试量" , "最后一次开机时间" ,"时间差" ,
"开机地点" , "网络类型" , "ip地址" ,
"用户" , "用户CRM" , "返利表序号" ,
"申请日期" , "区域" , "客户编码" ,
"代理商名称" , "用户名称" , "规格" ,
"状态")
#write_excel_csv(仪器编号和序列号all[,cname0],file="仪器编号和序列号all.csv")
write_excel_csv(仪器编号和序列号[,cname0],file="仪器编号和序列号.csv")
}
if(FALSE){
series<-read.csv("荧光层析设备1.csv",encoding = "UTF-8",fill = TRUE)
series1<-read.csv("FIC-Q100N20250710.csv",encoding = "UTF-8",fill = TRUE)
series0<-series$仪器序列号[series$仪器序列号 %in% 仪器号List$仪器序列号]
series00<-series$仪器编号[series$仪器编号 %in% series1$仪器编号]
colnames(series)[1:13]
colnames(series1)[3:11]
仪器编号和序列号0<-merge(series[,1:13],series1[,3:11],by="仪器编号",all=FALSE)
仪器编号和序列号1<-merge(series[,1:13],series1[,3:11],by="仪器编号",all=TRUE)
仪器编号和序列号2<-merge(series[,1:13],series1[,3:11],by="仪器编号",all.y=TRUE,all.x=FALSE)
unique编号1<-unique(仪器编号和序列号1$仪器编号)
unique序列号1<-unique(仪器编号和序列号1$仪器序列号)
unique编号2<-unique(仪器编号和序列号2$仪器编号)
unique序列号2<-unique(仪器编号和序列号2$仪器序列号)
#仪器编号和序列号all<-merge(series[,1:13],series1[,3:11],by="仪器编号",all=TRUE)
colnames(仪器编号和序列号1)
仪器编号和序列号0$SIM卡号<- gsub("\t", " ", 仪器编号和序列号0$SIM卡号)
仪器编号和序列号0$返利表序号<- gsub("\n", "_", 仪器编号和序列号0$返利表序号)
仪器编号和序列号1$SIM卡号<- gsub("\t", " ", 仪器编号和序列号1$SIM卡号)
仪器编号和序列号1$返利表序号<- gsub("\n", "_", 仪器编号和序列号1$返利表序号)
#仪器编号和序列号all$SIM卡号<- gsub("\t", " ", 仪器编号和序列号all$SIM卡号)
#仪器编号和序列号all$返利表序号<- gsub("\n", "_", 仪器编号和序列号all$返利表序号)
#仪器编号和序列号[仪器编号和序列号$仪器序列号=="781be43bb68f05bb",]
仪器编号和序列号1e<-仪器编号和序列号1[complete.cases(仪器编号和序列号1$区域),]
cname0<-c("仪器编号" , "仪器序列号" ,
"SIM卡号" , "发货时间" , "仪器类型" ,
"总测试量" , "最后一次开机时间" ,"时间差" ,
"开机地点" , "网络类型" , "ip地址" ,
"用户" , "用户CRM" , "返利表序号" ,
"申请日期" , "区域" , "客户编码" ,
"代理商名称" , "用户名称" , "规格" ,
"状态")
#write_excel_csv(仪器编号和序列号all[,cname0],file="仪器编号和序列号all.csv")
write_excel_csv(仪器编号和序列号1[,cname0],file="仪器编号和序列号1.csv")
mydb = dbConnect(MySQL(), user='root', password='My9521$$', dbname='和迈', host='192.168.11.223')
dbWriteTable(mydb, name='仪器编号和序列号1', value=仪器编号和序列号1)
dbDisconnect(mydb)
write_excel_csv(仪器编号和序列号1e[,cname0],file="仪器编号和序列号1e.csv")
mydb = dbConnect(MySQL(), user='root', password='My9521$$', dbname='和迈', host='192.168.11.223')
dbWriteTable(mydb, name='仪器编号和序列号1e', value=仪器编号和序列号1e)
dbDisconnect(mydb)
Numberof区域<-length(unique(仪器编号和序列号1e$区域))
listOfUnique细胞<-""
for(j in 1:Numberof区域) listOfUnique细胞<-paste(listOfUnique细胞,unique(仪器编号和序列号1e$区域)[j],sep="___")
细胞<-data.frame(cbind(1:Numberof区域,unique(df2andInf$区域)))
colnames(细胞)<-c("ID","细胞")
write_excel_csv(细胞,file="细胞.csv")
细胞1<-细胞[str_length(细胞$细胞)<=3,]
similiar<-str_like(细胞$细胞,paste(paste("%",细胞1$细胞[3],sep=""),"%",sep=""), ignore_case = TRUE)
细胞$细胞[30]
细胞$细胞[43]
细胞$细胞[30]<-细胞$细胞[43]
similiar<-str_like(细胞$细胞,paste(paste("%",细胞1$细胞[4],sep=""),"%",sep=""), ignore_case = TRUE)
细胞$细胞[9]
细胞$细胞[45]
细胞$细胞[45]<-细胞$细胞[9]
similiar<-str_like(细胞$细胞,paste(paste("%",细胞1$细胞[5],sep=""),"%",sep=""), ignore_case = TRUE)
细胞$细胞[17]
细胞$细胞[46]
细胞$细胞[46]<-细胞$细胞[17]
similiar<-str_like(细胞$细胞,paste(paste("%",细胞1$细胞[6],sep=""),"%",sep=""), ignore_case = TRUE)
细胞$细胞[11]
细胞$细胞[47]
细胞$细胞[47]<-细胞$细胞[11]
similiar<-str_like(细胞$细胞,paste(paste("%",细胞1$细胞[7],sep=""),"%",sep=""), ignore_case = TRUE)
细胞$细胞[14]
细胞$细胞[54]
细胞$细胞[54]<-细胞$细胞[14]
similiar<-str_like(细胞$细胞,paste(paste("%",细胞1$细胞[8],sep=""),"%",sep=""), ignore_case = TRUE)
细胞$细胞[63]
细胞$细胞[34]
细胞$细胞[63]<-细胞$细胞[34]
unique(细胞$细胞)
仪器编号和序列号1m<-仪器编号和序列号1e
仪器编号和序列号1m$区域[ str_like(仪器编号和序列号1m$区域,paste(paste("%",细胞1$细胞[3],sep=""),"%",sep=""), ignore_case = TRUE)]<-细胞$细胞[43]
仪器编号和序列号1m$区域[ str_like(仪器编号和序列号1m$区域,paste(paste("%",细胞1$细胞[4],sep=""),"%",sep=""), ignore_case = TRUE)]<-细胞$细胞[9]
仪器编号和序列号1m$区域[ str_like(仪器编号和序列号1m$区域,paste(paste("%",细胞1$细胞[5],sep=""),"%",sep=""), ignore_case = TRUE)]<-细胞$细胞[17]
仪器编号和序列号1m$区域[ str_like(仪器编号和序列号1m$区域,paste(paste("%",细胞1$细胞[6],sep=""),"%",sep=""), ignore_case = TRUE)]<-细胞$细胞[11]
仪器编号和序列号1m$区域[ str_like(仪器编号和序列号1m$区域,paste(paste("%",细胞1$细胞[7],sep=""),"%",sep=""), ignore_case = TRUE)]<-细胞$细胞[14]
仪器编号和序列号1m$区域[ str_like(仪器编号和序列号1m$区域,paste(paste("%",细胞1$细胞[8],sep=""),"%",sep=""), ignore_case = TRUE)]<-细胞$细胞[34]
write_excel_csv(仪器编号和序列号1m[,cname0],file="仪器编号和序列号1m.csv")
mydb = dbConnect(MySQL(), user='root', password='My9521$$', dbname='和迈', host='192.168.11.223')
dbWriteTable(mydb, name='仪器编号和序列号1m', value=仪器编号和序列号1m)
dbDisconnect(mydb)
Numberof区域<-length(unique(仪器编号和序列号1m$区域))
listOfUnique细胞<-""
for(j in 1:Numberof区域) listOfUnique细胞<-paste(listOfUnique细胞,unique(仪器编号和序列号1m$区域)[j],sep="___")
细胞m<-data.frame(cbind(1:Numberof区域,unique(df2andInf$区域)))
colnames(细胞m)<-c("ID","细胞")
write_excel_csv(细胞m,file="细胞m.csv")
}
mydb = dbConnect(MySQL(), user='root', password='My9521$$', dbname='和迈', host='192.168.11.223')
dbListTables(mydb)
#dbListFields(mydb, '测试数据')
#仪器编号和序列号all<-read.csv("仪器编号和序列号all.csv",encoding = "UTF-8",fill = TRUE)
#仪器编号和序列号<-read.csv("仪器编号和序列号.csv",encoding = "UTF-8",fill = TRUE)
rs = dbSendQuery(mydb, "select * from 和迈.仪器编号和序列号1m ")
仪器编号和序列号 = fetch(rs, n=-1)
colnames(仪器编号和序列号)
#仪器编号和序列号<-distinct(仪器编号和序列号[,2:22])
#仪器编号和序列号<-read.csv("仪器编号和序列号.csv",encoding = "UTF-8",fill = TRUE)
rs = dbSendQuery(mydb, "select * from 和迈.和迈测试数据 ")
df2 = fetch(rs, n=-1)
dbDisconnect(mydb)
#df2 = fetch(rs, n=-1)
#df2 <- read.csv("history06092025.csv",encoding = "UTF-8",fill = TRUE)
colnames(df2)
cname00<-c( "序号" , "项目号" , "批次号" , "样品编号" ,
"项目名称" , "批次名称" , "测试时间" , "浓度1" ,
"结论" , "C值" , "T值" , "浓度2" ,
"浓度3" , "结论2" , "结论3" , "样本类型" ,
"省市编号" , "仪器序列号" , "T2值" , "T3值" ,
"仪器备注名称", "仪器投放区域", "详细地址")
df2<-distinct(df2[,cname00])
df2$批次名称<-as.character(df2$批次名称)
df2<-df2[!is.na(df2$批次名称),]
df2andInf<-merge(df2,仪器编号和序列号[,c("仪器编号","仪器序列号","发货时间" ,"申请日期" ,
"区域" , "客户编码" , "代理商名称" ,
"用户名称" , "规格" , "状态")],by="仪器序列号",all.x=TRUE,all.y=FALSE)
df2andInf<-distinct(df2andInf)
#df2andInf0<-df2andInf[str_c(df2andInf$仪器编号, df2andInf$仪器序列号)!=NA,]
df2andInf$是否阳性<-df2andInf$结论
df2andInf$是否阳性[df2andInf$是否阳性=="阳性"]<-1.0
df2andInf$是否阳性[df2andInf$是否阳性=="阴性"]<-0.0
df2andInf$是否阳性[df2andInf$是否阳性=="无效"]<-0.5
df2andInf$是否阳性<-as.numeric(df2andInf$是否阳性)
df2andInf$是否阳性[is.na(df2andInf$是否阳性)]<-0.5
df2andInf$结论[df2andInf$结论=="阳性"]<-1.0
df2andInf$结论[df2andInf$结论=="阴性"]<-0.0
df2andInf$结论<-as.numeric(df2andInf$结论)
df2andInf$是否有效<-1
df2andInf$是否有效[df2andInf$是否阳性==0.5]<-0
df2andInf$省编号<-(df2andInf$省市编号 %/% 10000)*10000
df2andInf$省名<-str_sub(df2andInf$详细地址,1,3)
df2andInf$省名[str_length(df2andInf$省名)<3]<-NA
Numberof项目号<-length(unique(df2andInf$项目号))
Numberof批次号<-length(unique(df2andInf$批次号))
Numberof样品编号<-length(unique(df2andInf$样品编号))
Numberof项目名称<-length(unique(df2andInf$项目名称))
Numberof批次名称<-length(unique(df2andInf$批次名称))
Numberof省编号<-length(unique(df2andInf$省编号))
Numberof省名<-length(unique(df2andInf$省名))
Numberof省市编号<-length(unique(df2andInf$省市编号))
Numberof仪器序列号<-length(unique(df2andInf$仪器序列号))
Numberof详细地址<-length(unique(df2andInf$详细地址))
Numberof区域<-length(unique(df2andInf$区域))
Numberof仪器备注名称<-length(unique(df2andInf$仪器备注名称))
Numberof仪器投放区域<-length(unique(df2andInf$仪器投放区域))
Numberof样本类型<-length(unique(df2andInf$样本类型))
省编号and省名<-cbind(df2andInf$省编号,df2andInf$省名)
省编号and省名<-省编号and省名[!duplicated(省编号and省名),]
summaryTable<-stri_join("Numberof测试: ",as.character(nrow(df2andInf)),
"\nNumberof项目名称: ", as.character(Numberof项目名称),
"\nNumberof批次号: ",as.character(Numberof批次号), " \n",
"Numberof样品编号 ",as.character(Numberof样品编号)," \n",
"Numberof批次名称: ",as.character(Numberof批次名称)," \n",
"Numberof省编号: ",as.character(Numberof省编号)," \n",
"Numberof省市编号: ",as.character(Numberof省市编号)," \n",
"Numberof仪器序列号: ",as.character(Numberof仪器序列号)," \n",
"Numberof详细地址: ",as.character(Numberof详细地址)," \n",
"Numberof小细胞: ",as.character(Numberof区域)," \n",
"Numberof样本类型: ",as.character(Numberof样本类型)," \n",sep="")
summary(df2andInf$结论)
summary(df2andInf$是否阳性)
summary(df2andInf$是否有效)
#df2andInf$仪器序列号_批次名称<-str_c(df2andInf$仪器序列号,'_',df2andInf$批次名称)
colnames(df2andInf)
#colnames(df00)
#df2andInf00<-df2andInf0
summary(df2andInf$仪器序列号)
summary(df2andInf$批次名称)
df20<-df2andInf #[,c(1:11,16,17,20)]
df20$省编号<-str_c("省编号: ",df20$省编号)
df20<-df20[complete.cases(df20$测试时间), ]
df20<-df20[str_length(df20$测试时间)>10, ]
colnames(df20)
df20$浓度1<-as.numeric(df20$浓度1)
df20$C值<-as.numeric(df20$C值)
df20$T值<-as.numeric(df20$T值)
df20$ToverC值<-df20$T值/df20$C值
df20$ToverC值[df20$是否有效==0]<-NA
summary(as.numeric(df20$结论))
summary(df20$浓度1)
summary(df20$ToverC值)
summary(df20$testTimeFromeBegining)
colnames(df20)
df20$testMonth<-str_sub(df20$测试时间,1,7)
#df20$testMonthinNumber<-as.numeric(str_c(str_sub(df20$测试时间,1,4),str_sub(df20$测试时间,6,7)))
df20$testDay<-as.Date(str_sub(df20$测试时间,1,10))
df20<-df20[df20$testDay<="2025-06-05", ]
#df20<-df20[df20$testDay<=Sys.Date(), ]
df20<-df20[complete.cases(df20$testDay), ]
summary(df20$testDay)
df20$testTime<-as.datetime(str_sub(df20$测试时间,1,19),format='%Y-%m-%d %H:%M:%S')
duration<-(max(df20$testTime,na.rm = TRUE)-min(df20$testTime,na.rm = TRUE))/(60.*60.*24.)
df20$testTimeFromeToday<-(max(df20$testTime,na.rm = TRUE)-df20$testTime)/(60.*60.*24.)+1.
#max0<-max(df20$testTime,na.rm=TRUE)
#min0<-min(df20$testTime,na.rm=TRUE)
#unique(dfBy样本$样本类型)
#max0-min0
#max(df20$testDay,na.rm=TRUE)
#min(df20$testDay,na.rm=TRUE)
#clean_df <- df20[complete.cases(df20[,c("区域")]), ]
#summary(clean_df)
summary(df20$testTimeFromeToday)
dayMax<-max(df20$testTimeFromeToday,na.rm = TRUE)
df2000<-df20
df20<-df20[df20$testTimeFromeToday<=730,]
#df20<-df20[complete.cases(df20$测试时间), ]
lastDay<-max(df20$testDay,na.rm = TRUE)
df20dayLast21<-df20[lastDay-df20$testDay<21,]
dfByDay <- df2000 %>% group_by(testMonth,testDay) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
小细胞数=length(unique(区域)),
市数=length(unique(省市编号)),
省数=length(unique(省编号))
)
dfByDay$阳性率<-dfByDay$阳性数/dfByDay$有效数
dfByDay$有效率<-dfByDay$有效数/dfByDay$测试数
dfByDay$阳性数<-as.integer(dfByDay$阳性数)
dfByDay$测试数<-as.integer(dfByDay$测试数)
dfByDay$有效数<-as.integer(dfByDay$有效数)
dfByDay$省数<-as.integer(dfByDay$省数)
dfByDay <- dfByDay[order(dfByDay$testDay),]
#dfByDay<-dfByDay[lastDay-dfByDay$testDay<=21,]
write_excel_csv(dfByDay,file="按日统计0.csv")
dfByMonth <- df2000 %>% group_by(testMonth) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
小细胞数=length(unique(区域)),
市数=length(unique(省市编号)),
省数=length(unique(省编号))
)
dfByMonth$阳性率<-dfByMonth$阳性数/dfByMonth$有效数
dfByMonth$有效率<-dfByMonth$有效数/dfByMonth$测试数
dfByMonth$阳性数<-as.integer(dfByMonth$阳性数)
dfByMonth$测试数<-as.integer(dfByMonth$测试数)
dfByMonth$有效数<-as.integer(dfByMonth$有效数)
dfByMonth$省数<-as.integer(dfByMonth$省数)
dfByMonth <- dfByMonth[order(dfByMonth$testMonth),]
dfByMonth <- dfByMonth[nrow(dfByMonth):1,]
write_excel_csv(dfByMonth,file="按月统计0.csv")
dfBy项目 <- df2000 %>% group_by(项目名称) %>% summarise(
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
样本数=length(unique(样本类型)),
省数=length(unique(省编号)),
市数=length(unique(省市编号)),
小细胞数=length(unique(区域)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy项目$阳性率<-dfBy项目$阳性数/dfBy项目$有效数
dfBy项目$有效率<-dfBy项目$有效数/dfBy项目$测试数
dfBy项目$阳性数<-as.integer(dfBy项目$阳性数)
dfBy项目$测试数<-as.integer(dfBy项目$测试数)
dfBy项目$有效数<-as.integer(dfBy项目$有效数)
dfBy项目 <- dfBy项目[order(-dfBy项目$测试数),]
write_excel_csv(dfBy项目,file="按项目统计0.csv")
dfBy样本 <- df2000 %>% group_by(样本类型) %>% summarise(
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
项目数=length(unique(项目名称)),
省数=length(unique(省编号)),
市数=length(unique(省市编号)),
小细胞数=length(unique(区域)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy样本$阳性率<-dfBy样本$阳性数/dfBy样本$有效数
dfBy样本$有效率<-dfBy样本$有效数/dfBy样本$测试数
dfBy样本$阳性数<-as.integer(dfBy样本$阳性数)
dfBy样本$测试数<-as.integer(dfBy样本$测试数)
dfBy样本$有效数<-as.integer(dfBy样本$有效数)
dfBy样本 <- dfBy样本[order(-dfBy样本$测试数),]
write_excel_csv(dfBy样本,file="按样本统计0.csv")
dfBy细胞 <- df2000 %>% group_by(区域) %>% summarise(
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
市数=length(unique(省市编号)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy细胞$阳性率<-dfBy细胞$阳性数/dfBy细胞$有效数
dfBy细胞$有效率<-dfBy细胞$有效数/dfBy细胞$测试数
dfBy细胞$阳性数<-as.integer(dfBy细胞$阳性数)
dfBy细胞$测试数<-as.integer(dfBy细胞$测试数)
dfBy细胞$有效数<-as.integer(dfBy细胞$有效数)
dfBy细胞 <- dfBy细胞[order(-dfBy细胞$测试数),]
write_excel_csv(dfBy细胞,file="按细胞统计0.csv")
dfBy区域 <- df2000 %>% group_by(省编号) %>% summarise(
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
市数=length(unique(省市编号)),
小细胞数=length(unique(区域)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy区域$阳性率<-dfBy区域$阳性数/dfBy区域$有效数
dfBy区域$有效率<-dfBy区域$有效数/dfBy区域$测试数
dfBy区域$阳性数<-as.integer(dfBy区域$阳性数)
dfBy区域$测试数<-as.integer(dfBy区域$测试数)
dfBy区域$有效数<-as.integer(dfBy区域$有效数)
dfBy区域 <- dfBy区域[order(-dfBy区域$测试数),]
write_excel_csv(dfBy区域,file="按区域统计0.csv")
dfBy批次 <- df2000 %>% group_by(批次名称) %>% summarise(
仪器数=length(unique(仪器序列号)),
测试数 = n(),
省数=length(unique(省编号)),
市数=length(unique(省市编号)),
小细胞数=length(unique(区域)),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
最早测试=min(testDay,na.rm = TRUE),
最近测试=max(testDay,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy批次$阳性率<-dfBy批次$阳性数/dfBy批次$有效数
dfBy批次$有效率<-dfBy批次$有效数/dfBy批次$测试数
dfBy批次$阳性数<-as.integer(dfBy批次$阳性数)
dfBy批次$测试数<-as.integer(dfBy批次$测试数)
dfBy批次$有效数<-as.integer(dfBy批次$有效数)
dfBy批次$省数<-as.integer(dfBy批次$省数)
dfBy批次 <- dfBy批次[order(-dfBy批次$测试数),]
write_excel_csv(dfBy批次,file="按批次统计0.csv")
df20001<-cbind(df2000,IDIndex=1:nrow(df2000))
dfBy仪器 <- df20001 %>% group_by(仪器序列号) %>% summarise(
批次数=length(unique(批次名称)),
测试数 = n(),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
earliestIndex=min(IDIndex),
medianIndex=median(IDIndex),
latestIndex=max(IDIndex),
最早测试=min(testDay,na.rm = TRUE),
最近测试=max(testDay,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy仪器$阳性率<-dfBy仪器$阳性数/dfBy仪器$有效数
dfBy仪器$有效率<-dfBy仪器$有效数/dfBy仪器$测试数
dfBy仪器$阳性数<-as.integer(dfBy仪器$阳性数)
dfBy仪器$测试数<-as.integer(dfBy仪器$测试数)
dfBy仪器$有效数<-as.integer(dfBy仪器$有效数)
dfBy仪器$最早测试地点<-df2000$详细地址[dfBy仪器$earliestIndex]
dfBy仪器$中期测试地点<-df2000$详细地址[dfBy仪器$medianIndex]
dfBy仪器$最后测试地点<-df2000$详细地址[dfBy仪器$latestIndex]
dfBy仪器 <- dfBy仪器[order(-dfBy仪器$测试数),]
write_excel_csv(dfBy仪器,file="按仪器统计0.csv")
cname0<-c( "仪器序列号" ,"仪器编号" ,"最早测试地点","中期测试地点", "最后测试地点",
"开机地点" , "批次数" , "测试数" , "样本数" , "项目数" ,
"阳性数", "有效数" , "最早测试" , "最近测试" , "测试开始" ,
"测试截止", "阳性率" , "有效率",
"SIM卡号" , "发货时间" , "仪器类型" ,
"总测试量" , "最后一次开机时间" ,"时间差" ,
"网络类型" , "ip地址" ,
"用户" , "用户CRM" , "返利表序号" ,
"申请日期" , "区域" , "客户编码" ,
"代理商名称" , "用户名称" , "规格" ,
"状态")
colnames(dfBy仪器)
dfBy仪器andInf<-merge(dfBy仪器,仪器编号和序列号,by="仪器序列号",all.x=TRUE,all.y=FALSE)
colnames(dfBy仪器andInf)
dfBy仪器andInf <- dfBy仪器andInf[order(-dfBy仪器andInf$测试截止),][,cname0]
#dfBy仪器andInf0<-distinct(dfBy仪器andInf)
write_excel_csv(dfBy仪器andInf,file="仪器统计andInf.csv")
dfBy仪器andInfall<-merge(dfBy仪器,仪器编号和序列号,by="仪器序列号",all.x=TRUE,all.y=TRUE)
dfBy仪器andInfall <- dfBy仪器andInfall[order(-dfBy仪器andInfall$测试截止),][,cname0]
#dfBy仪器andInfall0<-distinct(dfBy仪器andInfall)
write_excel_csv(dfBy仪器andInfall,file="仪器统计andInfall.csv")
colnames(仪器编号和序列号)
notFound<-仪器编号和序列号[!(仪器编号和序列号$仪器序列号 %in% dfBy仪器$仪器序列号),]
colnames(notFound)
cname1<-c( "仪器序列号" ,"仪器编号" ,
"开机地点" ,
"SIM卡号" , "发货时间" , "仪器类型" ,
"总测试量" , "最后一次开机时间" ,"时间差" ,
"网络类型" , "ip地址" ,
"用户" , "用户CRM" , "返利表序号" ,
"申请日期" , "区域" , "客户编码" ,
"代理商名称" , "用户名称" , "规格" ,
"状态")
#notFound[,cname1]
#notFound0<-distinct(notFound)
write_excel_csv(notFound[,cname1],file="仪器统计Notfound.csv")
if(FALSE) {
CRMNotFound <- read.csv("CRMNotFound.csv",encoding = "UTF-8",fill = TRUE)
NoTestSince05012025 <- read.csv("NoTestSince05012025.csv",encoding = "UTF-8",fill = TRUE)
colnames(CRMNotFound)[c(3,4,5)]<-c("销售申请时间NoCRM","销售申请区域NoCRM","销售申请时代理商名称NoCRM")
colnames(NoTestSince05012025) [9]<-"备注NoTest"
feedbackData<-merge(CRMNotFound,NoTestSince05012025,by="仪器编号",all.x=TRUE,all.y=TRUE)
colnames(feedbackData)
colnames(feedbackData)[10]<-"用户onCRM"
write_excel_csv(feedbackData,file="feedbackData07042025.csv")
仪器编号和序列号feedbackData<-merge(仪器编号和序列号,feedbackData,by="仪器编号",all.x=TRUE,all.y=TRUE)
colnames(仪器编号和序列号feedbackData)
dfBy仪器feedbackDataandInf<-merge(dfBy仪器,仪器编号和序列号feedbackData,by="仪器序列号",all.x=TRUE,all.y=FALSE)
colnames(dfBy仪器feedbackDataandInf)
cname0<-c( "仪器序列号" ,"仪器编号" ,"最早测试地点","中期测试地点", "最后测试地点",
"开机地点" , "批次数" , "测试数" , "样本数" , "项目数" ,
"阳性数", "有效数" , "最早测试" , "最近测试" , "测试开始" ,
"测试截止", "阳性率" , "有效率",
"SIM卡号" , "发货时间" , "仪器类型" ,
"总测试量" , "最后一次开机时间" ,"时间差" ,
"网络类型" , "ip地址" ,
"用户" , "用户CRM" , "返利表序号" ,
"申请日期" , "区域" , "客户编码" ,
"代理商名称" , "用户名称" , "规格" ,
"状态","销售申请时间" , "销售申请时间NoCRM" ,
"销售申请区域NoCRM" , "销售申请时代理商名称NoCRM",
"是否装机" , "未装机原因" ,
"备注" , "最后测试时间" ,
"用户onCRM" , "销售申请日期" ,
"销售申请区域" , "销售申请时代理商名称" ,
"销售申请时用户名称" , "无测试原因" ,
"备注NoTest" )
dfBy仪器feedbackDataandInf <- dfBy仪器feedbackDataandInf[order(-dfBy仪器feedbackDataandInf$测试截止),][,cname0]
write_excel_csv(dfBy仪器feedbackDataandInf,file="仪器统计feedbackandInf.csv")
dfBy仪器feedbackDataandInfall<-merge(dfBy仪器,仪器编号和序列号feedbackData,by="仪器序列号",all.x=TRUE,all.y=TRUE)
dfBy仪器feedbackDataandInfall <- dfBy仪器feedbackDataandInfall[order(-dfBy仪器feedbackDataandInfall$测试截止),][,cname0]
write_excel_csv(dfBy仪器feedbackDataandInfall,file="仪器统计feedbackandInfall.csv")
colnames(仪器编号和序列号feedbackData)
notFoundfeedBack<-仪器编号和序列号feedbackData[!(仪器编号和序列号feedbackData$仪器序列号 %in% dfBy仪器$仪器序列号),]
cname1<-c( "仪器序列号" ,"仪器编号" ,
"开机地点" ,
"SIM卡号" , "发货时间" , "仪器类型" ,
"总测试量" , "最后一次开机时间" ,"时间差" ,
"网络类型" , "ip地址" ,
"用户" , "用户CRM" , "返利表序号" ,
"申请日期" , "区域" , "客户编码" ,
"代理商名称" , "用户名称" , "规格" ,
"状态","销售申请时间" , "销售申请时间NoCRM" ,
"销售申请区域NoCRM" , "销售申请时代理商名称NoCRM",
"是否装机" , "未装机原因" ,
"备注" , "最后测试时间" ,
"用户onCRM" , "销售申请日期" ,
"销售申请区域" , "销售申请时代理商名称" ,
"销售申请时用户名称" , "无测试原因" ,
"备注NoTest" )
colnames(notFoundfeedBack)
write_excel_csv(notFoundfeedBack[,cname1],file="仪器统计NotfoundfeedBack.csv")
}
dfByDayAndLocation <- df2000 %>% group_by(testDay,testMonth,省编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
小细胞数=length(unique(区域)),
市数=length(unique(省市编号)),
省数=length(unique(省编号))
)
dfByDayAndLocation$阳性率<-dfByDayAndLocation$阳性数/dfByDayAndLocation$有效数
dfByDayAndLocation$有效率<-dfByDayAndLocation$有效数/dfByDayAndLocation$测试数
dfByDayAndLocation$阳性数<-as.integer(dfByDayAndLocation$阳性数)
dfByDayAndLocation$测试数<-as.integer(dfByDayAndLocation$测试数)
dfByDayAndLocation$有效数<-as.integer(dfByDayAndLocation$有效数)
dfByDayAndLocation <- dfByDayAndLocation[order(dfByDayAndLocation$testDay),]
dfByMonthAndLocation <- df20 %>% group_by(testMonth,省编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
小细胞数=length(unique(区域)),
市数=length(unique(省市编号))
)
dfByMonthAndLocation$阳性率<-dfByMonthAndLocation$阳性数/dfByMonthAndLocation$有效数
dfByMonthAndLocation$有效率<-dfByMonthAndLocation$有效数/dfByMonthAndLocation$测试数
dfByMonthAndLocation$阳性数<-as.integer(dfByMonthAndLocation$阳性数)
dfByMonthAndLocation$测试数<-as.integer(dfByMonthAndLocation$测试数)
dfByMonthAndLocation$有效数<-as.integer(dfByMonthAndLocation$有效数)
dfByMonthAndLocation <- dfByMonthAndLocation[order(dfByMonthAndLocation$testMonth),]
dfByDayAnd细胞 <- df2000 %>% group_by(testDay,testMonth,区域) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称))
)
dfByDayAnd细胞$阳性率<-dfByDayAnd细胞$阳性数/dfByDayAnd细胞$有效数
dfByDayAnd细胞$有效率<-dfByDayAnd细胞$有效数/dfByDayAnd细胞$测试数
dfByDayAnd细胞$阳性数<-as.integer(dfByDayAnd细胞$阳性数)
dfByDayAnd细胞$测试数<-as.integer(dfByDayAnd细胞$测试数)
dfByDayAnd细胞$有效数<-as.integer(dfByDayAnd细胞$有效数)
dfByDayAnd细胞 <- dfByDayAnd细胞[order(dfByDayAnd细胞$testDay),]
dfByMonthAnd细胞 <- df20 %>% group_by(testMonth,区域) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称))
)
dfByMonthAnd细胞$阳性率<-dfByMonthAnd细胞$阳性数/dfByMonthAnd细胞$有效数
dfByMonthAnd细胞$有效率<-dfByMonthAnd细胞$有效数/dfByMonthAnd细胞$测试数
dfByMonthAnd细胞$阳性数<-as.integer(dfByMonthAnd细胞$阳性数)
dfByMonthAnd细胞$测试数<-as.integer(dfByMonthAnd细胞$测试数)
dfByMonthAnd细胞$有效数<-as.integer(dfByMonthAnd细胞$有效数)
dfByMonthAnd细胞 <- dfByMonthAnd细胞[order(dfByMonthAnd细胞$testMonth),]
cairo_pdf(paste("和迈dataAnalytics07112025n",".pdf",sep=""), width = 8, height = 6,family = "SimHei" )
plotSummaryTable<-ggplot() +geom_text(aes(x = 100, y = 40,
label = summaryTable),
stat = "unique",
fontface = "bold",
color = "black", # 标签颜色
size = 5.0 )+ # 字体大小
xlim(0,200)+ylim(0,100)+
theme_minimal() + theme(axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank())
plotSummaryTable
dfByDay1<-dfByDay[lastDay-dfByDay$testDay<42,]
plotfunction(dfData=dfByDay1,independentVariableName="testDay",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfByDay1,independentVariableName="testDay",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfByDay1,independentVariableName="testDay",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfByDay1,independentVariableName="testDay",
dependentVariableNames=c("样本数","市数","省数","小细胞数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
dfByDayAndLocation1<-dfByDayAndLocation[lastDay-dfByDayAndLocation$testDay<42,]
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[1:6],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[7:12],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[13:18],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[c(19:23,25)],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[26:31],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[1:6],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[1:6],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAndLocation(dfData=dfByDayAndLocation1,choosenList=dfBy区域$省编号[1:6],independentVariableName="testDay",panelName="省编号",
dependentVariableNames=c("样本数","市数","省数","小细胞数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
dfByDayAnd细胞1<-dfByDayAnd细胞[lastDay-dfByDayAnd细胞$testDay<42,]
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[1:6],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[7:12],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[13:18],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[19:24],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[25:30],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[31:36],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[37:42],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[43:48],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[49:54],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[55:57],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[1:6],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[1:6],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
panelPlotByDayAnd细胞(dfData=dfByDayAnd细胞1,choosenList=dfBy细胞$区域[1:6],independentVariableName="testDay",panelName="区域",
dependentVariableNames=c("样本数"),titleNames=c("最后六周按日测试统计","测试时间","统计数值",""))
dfByMonth1<-dfByMonth[1:30,]
plotfunction(dfData=dfByMonth1,independentVariableName="testMonth",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfByMonth1,independentVariableName="testMonth",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按月测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfByMonth1,independentVariableName="testMonth",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("按月测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfByMonth1,independentVariableName="testMonth",
dependentVariableNames=c("样本数","市数","省数","小细胞数"),titleNames=c("按月测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[1:6],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[7:12],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[13:18],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[c(19:23,25)],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[26:31],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[1:6],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[1:6],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAndLocation(dfData=dfByMonthAndLocation,choosenList=dfBy区域$省编号[1:6],independentVariableName="testMonth",panelName="省编号",
dependentVariableNames=c("样本数","市数","小细胞数"),titleNames=c("按月分省测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[1:6],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[7:12],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[13:18],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[19:24],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[25:30],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[31:36],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[37:42],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[43:48],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[49:54],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[55:57],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[1:6],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[1:6],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
panelPlotByMonthAnd细胞(dfData=dfByMonthAnd细胞,choosenList=dfBy细胞$区域[1:6],independentVariableName="testMonth",panelName="区域",
dependentVariableNames=c("样本数"),titleNames=c("按月分细胞测试统计","测试时间","统计数值",""))
plotfunction(dfData=dfBy区域,independentVariableName="省编号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按省测试统计","省编号","统计数值",""))
plotfunction(dfData=dfBy区域,independentVariableName="省编号",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按省测试统计","省编号","统计数值",""))
plotfunction(dfData=dfBy区域,independentVariableName="省编号",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("按省测试统计","省编号","统计数值",""))
plotfunction(dfData=dfBy区域,independentVariableName="省编号",
dependentVariableNames=c("样本数","市数","小细胞数"),titleNames=c("按省测试统计","省编号","统计数值",""))
plotfunctionLog(dfData=dfBy区域,independentVariableName="省编号",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按省测试统计","省编号","多少天之前",""))
lenhalf<-length(dfBy细胞$区域)/2
dfBy细胞1<-dfBy细胞[dfBy细胞$区域 %in% dfBy细胞$区域[1:lenhalf],]
dfBy细胞2<-dfBy细胞[dfBy细胞$区域 %in% dfBy细胞$区域[(1+lenhalf):length(dfBy细胞$区域)],]
plotfunction(dfData=dfBy细胞1,independentVariableName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞2,independentVariableName="区域",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞1,independentVariableName="区域",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞2,independentVariableName="区域",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞1,independentVariableName="区域",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞2,independentVariableName="区域",
dependentVariableNames=c("项目数","仪器数","批次数"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞1,independentVariableName="区域",
dependentVariableNames=c("样本数","市数"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunction(dfData=dfBy细胞2,independentVariableName="区域",
dependentVariableNames=c("样本数","市数"),titleNames=c("按细胞测试统计","细胞","统计数值",""))
plotfunctionLog(dfData=dfBy细胞1,independentVariableName="区域",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按细胞测试统计","细胞","多少天之前",""))
plotfunctionLog(dfData=dfBy细胞2,independentVariableName="区域",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按细胞测试统计","细胞","多少天之前",""))
仪器号List0<-cbind(dfBy仪器,GroupID=rep00[1:length(dfBy仪器$仪器序列号)])
仪器号List<-仪器号List0[,c(1,ncol(仪器号List0))]
dfBy仪器$仪器序列号<-factor(dfBy仪器$仪器序列号,levels = 仪器号List[,1])
plotfunctionVector仪器序列号(ik=1,independentVariableList=仪器号List,dfData=dfBy仪器,independentVariableName="仪器序列号",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按仪器测试统计","仪器序列号","统计数值",""))
plotfunctionVector仪器序列号(ik=1,independentVariableList=仪器号List,dfData=dfBy仪器,independentVariableName="仪器序列号",
dependentVariableNames=c("项目数","样本数","批次数"),titleNames=c("按仪器测试统计","仪器序列号","统计数值",""))
plotfunctionVector仪器序列号(ik=1,independentVariableList=仪器号List,dfData=dfBy仪器,independentVariableName="仪器序列号",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按仪器测试统计","仪器序列号","统计数值",""))
plotfunctionVector仪器序列号Log(ik=1,independentVariableList=仪器号List,dfData=dfBy仪器,independentVariableName="仪器序列号",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按仪器测试统计","仪器序列号","多少天之前",""))
if(FALSE) {
dfBy仪器00 <- df2000 %>% group_by(仪器序列号,省市编号,详细地址,仪器备注名称,仪器投放区域) %>% summarise(
批次数=length(unique(批次名称)),
测试数 = n(),
样本数=length(unique(样本类型)),
项目数=length(unique(项目名称)),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
earliestIndex=min(IDIndex),
medianIndex=median(IDIndex),
latestIndex=max(IDIndex),
最早测试=min(testDay,na.rm = TRUE),
最近测试=max(testDay,na.rm = TRUE),
测试开始 = round(max(testTimeFromeToday,na.rm = TRUE),2),
测试截止 = round(min(testTimeFromeToday,na.rm = TRUE),2)
)
dfBy仪器00$阳性率<-dfBy仪器00$阳性数/dfBy仪器00$有效数
dfBy仪器00$有效率<-dfBy仪器00$有效数/dfBy仪器00$测试数
dfBy仪器00$阳性数<-as.integer(dfBy仪器00$阳性数)
dfBy仪器00$测试数<-as.integer(dfBy仪器00$测试数)
dfBy仪器00$有效数<-as.integer(dfBy仪器00$有效数)
dfBy仪器1<-merge(dfBy仪器00[,1:5],dfBy仪器,by="仪器序列号",all=FALSE)
write_excel_csv(dfBy仪器1,file="仪器统计1.csv")
#仪器号MissedFromTwoYearsAgo<-仪器号[!(仪器号 %in% 仪器号00)]
}
#样本号List<-unique(dfBy样本$样本类型)
plotfunction(dfData=dfBy样本,independentVariableName="样本类型",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按样本类型测试统计","样本类型","统计数值",""))
plotfunction(dfData=dfBy样本,independentVariableName="样本类型",
dependentVariableNames=c("项目数","批次数","省数","小细胞数"),titleNames=c("按样本类型测试统计","样本类型","统计数值",""))
plotfunction(dfData=dfBy样本,independentVariableName="样本类型",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按样本类型测试统计","样本类型","统计数值",""))
plotfunctionLog(dfData=dfBy样本,independentVariableName="样本类型",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按样本类型测试统计","样本类型","多少天之前",""))
批次号List0<-cbind(dfBy批次,GroupID=rep00[1:length(dfBy批次$批次名称)])
批次号List<-批次号List0[,c(1,ncol(批次号List0))]
dfBy批次$批次名称<-factor(dfBy批次$批次名称,levels = 批次号List[,1])
plotfunctionVector批次名称(ik=1,independentVariableList=批次号List,dfData=dfBy批次,independentVariableName="批次名称",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按批次测试统计","批次名称","统计数值",""))
plotfunctionVector批次名称(ik=1,independentVariableList=批次号List,dfData=dfBy批次,independentVariableName="批次名称",
dependentVariableNames=c("项目数","样本数","省数","小细胞数"),titleNames=c("按试剂批次测试统计","批次名称","统计数值",""))
plotfunctionVector批次名称(ik=1,independentVariableList=批次号List,dfData=dfBy批次,independentVariableName="批次名称",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按试剂批次测试统计","批次名称","统计数值",""))
plotfunctionVector批次名称Log(ik=1,independentVariableList=批次号List,dfData=dfBy批次,independentVariableName="批次名称",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按试剂批次测试统计","批次名称","多少天之前",""))
项目号List0<-cbind(dfBy项目,GroupID=rep00[1:length(dfBy项目$项目名称)])
项目号List<-项目号List0[,c(1,ncol(项目号List0))]
dfBy项目$项目名称<-factor(dfBy项目$项目名称,levels = 项目号List[,1])
plotfunctionVector项目名称(ik=1,independentVariableList=项目号List,dfData=dfBy项目,independentVariableName="项目名称",
dependentVariableNames=c("测试数","有效数","阳性数"),titleNames=c("按项目测试统计","项目名称","统计数值",""))
plotfunctionVector项目名称(ik=1,independentVariableList=项目号List,dfData=dfBy项目,independentVariableName="项目名称",
dependentVariableNames=c("批次数","样本数","省数","小细胞数"),titleNames=c("按试剂项目测试统计","项目名称","统计数值",""))
plotfunctionVector项目名称(ik=1,independentVariableList=项目号List,dfData=dfBy项目,independentVariableName="项目名称",
dependentVariableNames=c("有效率","阳性率"),titleNames=c("按试剂项目测试统计","项目名称","统计数值",""))
plotfunctionVector项目名称Log(ik=1,independentVariableList=项目号List,dfData=dfBy项目,independentVariableName="项目名称",
dependentVariableNames=c("测试开始","测试截止"),titleNames=c("按试剂项目测试统计","项目名称","多少天之前",""))
dev.off()
df20$浓度1<-as.numeric(df20$浓度1)
df20$C值<-as.numeric(df20$C值)
df20$T值<-as.numeric(df20$T值)
df20$ToverC值<-df20$T值/df20$C值
df20$ToverC值[df20$是否有效==0]<-NA
summary(as.numeric(df20$结论))
summary(df20$浓度1)
summary(df20$ToverC值)
summary(df20$testTimeFromeToday)
colnames(df20)
#df201<-df20
# for(i in 1:5){
cairo_pdf(paste("和迈dataAnalyticsForRandD","_a07112025m.pdf",sep=""), width = 8, height = 6,family = "SimHei" )
plotSummaryTable
# df20<-df201[(df201$项目名称 %in% dfBy项目top4[i]),]
# plot项目名称Title<-ggplot() +geom_text(aes(x = 100, y = 60,
# label = paste("项目名称: ",dfBy项目名称top5[i],sep="")),
# stat = "unique",
# fontface = "bold",
# color = "black", # 标签颜色
# size = 8.0 )+ # 字体大小
# xlim(0,200)+ylim(0,100)+
# theme_minimal() + theme(axis.text = element_blank(),
# axis.ticks = element_blank(),
# axis.title = element_blank())
#
# plot项目名称Title
df20 <- df20[order(-df20$testTimeFromeToday),]
df20 <- df20 %>% group_by(批次名称) %>% transform(
浓度1移动均值 = running_avg(浓度1,20),
C值移动均值 = running_avg(C值,20),
T值移动均值 = running_avg(T值,20),
ToverC值移动均值 = running_avg(ToverC值,20),
结论移动均值 = running_avg(结论,20)
)
# df20$浓度1移动均值<-running_avg(df20$浓度1, 20)
# df20$C值移动均值<-running_avg(df20$C值, 20)
# df20$T值移动均值<-running_avg(df20$T值, 20)
# df20$ToverC值移动均值<-running_avg(df20$ToverC值, 20)
# df20$结论移动均值<-running_avg(df20$结论, 20)
df20$浓度1累计均值<-lumping_avg(df20$浓度1)
df20$C值累计均值<-lumping_avg(df20$C值)
df20$T值累计均值<-lumping_avg(df20$T值)
df20$ToverC值累计均值<-lumping_avg(df20$ToverC值)
df20$结论累计均值<-lumping_avg(df20$结论)
# df20$浓度1累计标差<-lumping_sd(df20$浓度1)
# df20$C值累计标差<-lumping_sd(df20$C值)
# df20$T值累计标差<-lumping_sd(df20$T值)
# df20$ToverC值累计标差<-lumping_sd(df20$ToverC值)
# df20$结论累计标差<-lumping_sd(df20$结论移动均值)
df20$浓度1累计标差<-lumping_sd(df20$浓度1移动均值)
df20$C值累计标差<-lumping_sd(df20$C值移动均值)
df20$T值累计标差<-lumping_sd(df20$T值移动均值)
df20$ToverC值累计标差<-lumping_sd(df20$ToverC值移动均值)
df20$结论累计标差<-lumping_sd(df20$结论移动均值)
df20$浓度1允许波动范围<-df20$浓度1累计均值+2*df20$浓度1累计标差
df20$C值允许波动范围<-df20$C值累计均值+2*df20$C值累计标差
df20$T值允许波动范围<-df20$T值累计均值+2*df20$T值累计标差
df20$ToverC值允许波动范围<-df20$ToverC值累计均值+2*df20$ToverC值累计标差
df20$结论允许波动范围<-df20$结论累计均值+2*df20$结论累计标差
summary(df20$浓度1移动均值)
summary(df20$running_avg)
summary(df20$浓度1累计均值)
summary(df20$浓度1累计标差)
summary(df20$结论累计均值)
df200<-df20
df20<-df200[df200$项目名称 %in% 项目号List[1,1], ]
#df20Ploted<-df20[df20$批次名称 %in% 批次号List$批次名称[批次号List[,2]==1],]
df20Ploted<-df20[df20$批次名称 %in% 批次号List$批次名称[1:5],]
pointPlotfunction批次(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="浓度1",titleNames=c("浓度","测试日期","浓度1",""))
pointPlotfunction批次Log(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="C值",titleNames=c("C值","测试日期","C值",""))
pointPlotfunction批次Log(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="T值",titleNames=c("T值","测试日期","T值",""))
pointPlotfunction批次(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="ToverC值",titleNames=c("T/C值","测试日期","T/C值",""))
pointPlotfunction批次(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="结论移动均值",titleNames=c("结论/阳性率","测试日期","结论/阳性率",""))
df20Ploted<-df20[df20$仪器序列号 %in% 仪器号List$仪器序列号[1:5],]
pointPlotfunction仪器(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="浓度1",titleNames=c("浓度","测试日期","浓度1",""))
pointPlotfunction仪器Log(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="C值",titleNames=c("C值","测试日期","C值",""))
pointPlotfunction仪器Log(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="T值",titleNames=c("T值","测试日期","T值",""))
pointPlotfunction仪器(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="ToverC值",titleNames=c("T/C值","测试日期","T/C值",""))
pointPlotfunction仪器(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="结论移动均值",titleNames=c("结论/阳性率","测试日期","结论/阳性率",""))
df20Ploted<-df20[df20$样本类型 %in% unique(df20$样本类型)[1:2],]
pointPlotfunction样本(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="浓度1",titleNames=c("浓度","测试日期","浓度1",""))
pointPlotfunction样本Log(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="C值",titleNames=c("C值","测试日期","C值",""))
pointPlotfunction样本Log(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="T值",titleNames=c("T值","测试日期","T值",""))
pointPlotfunction样本(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="ToverC值",titleNames=c("T/C值","测试日期","T/C值",""))
pointPlotfunction样本(dfData=df20Ploted,independentVariableName="testDay",
dependentVariableName="结论移动均值",titleNames=c("结论/阳性率","测试日期","结论/阳性率",""))
dev.off()