BackFedDataAnalytics/analyticsRecord06052025.R

2944 lines
117 KiB
R
Raw Normal View History

2025-06-10 17:14:04 +08:00
cairo_pdf("dataAnalyticsExample06052025.pdf", width = 8, height = 6,family = "SimHei" )
library(readr)
library(data.table)
library(Cairo)
library(ggplot2)
library(stringr)
library(datetime)
library(dplyr)
library(ggthemes)
#guess_encoding("historyRecord20.csv") # [[1]]$encoding
df2 <- fread("historyRecord20250604175205UTF.csv",encoding = "UTF-8",fill = TRUE)
df2$批次名称<-as.character(df2$批次名称)
df2<-df2[!is.na(df2$批次名称),]
df2$是否阳性<-df2$结论
df2$是否阳性[df2$是否阳性=="阳性"]<-1.0
df2$是否阳性[df2$是否阳性=="阴性"]<-0.0
df2$是否阳性[df2$是否阳性=="无效"]<-0.5
df2$是否阳性<-as.numeric(df2$是否阳性)
df2$是否阳性[is.na(df2$是否阳性)]<-0.5
df2$结论[df2$结论=="阳性"]<-1.0
df2$结论[df2$结论=="阴性"]<-0.0
df2$结论<-as.numeric(df2$结论)
df2$是否有效<-1
df2$是否有效[df2$是否阳性==0.5]<-0
summary(df2$结论)
summary(df2$是否阳性)
summary(df2$是否有效)
#df2$仪器序列号_批次名称<-str_c(df2$仪器序列号,'_',df2$批次名称)
colnames(df2)
#df200<-df20
summary(df2$仪器序列号)
summary(df2$批次名称)
unique(df2$批次名称)
unique(df2$仪器序列号)
unique(df2$省市编号)
unique(df2$详细地址)
unique(df2$仪器投放区域)
unique(df2$仪器备注名称)
df20<-df2 #[,c(1:11,16,17,20)]
df20$省市编号<-str_c("省市编号: ",df20$省市编号)
colnames(df20)
# df20$testTime<-str_sub(df20$测试时间,1,19)
# df20$date<-as.Date(str_sub(df20$测试时间,1,10))
# df20$time<-str_sub(df20$测试时间,12,19)
# df20$time0<-as.time(df20$time)
df20$testMonth<-str_sub(df20$测试时间,1,7)
#df20$testMonthinNumber<-as.numeric(str_c(str_sub(df20$测试时间,1,4),str_sub(df20$测试时间,6,7)))
df20$testDay<-as.Date(str_sub(df20$测试时间,1,10))
df20$testTime<-as.datetime(str_sub(df20$测试时间,1,19),format='%Y-%m-%d %H:%M:%S')
duration<-difftime(max(df20$testTime,na.rm = TRUE),min(df20$testTime,na.rm = TRUE),unit="hour")/24
df20$testTimeFromeBegining<-as.numeric(difftime(df20$testTime,min(df20$testTime,na.rm = TRUE),unit="hour")/24)
summary(df20$testTimeFromeBegining)
dayMax<-max(df20$testTimeFromeBegining)
df20<-df20[dayMax-df20$testTimeFromeBegining<730,]
#unique(df20$仪器序列号_批次名称)
df20 <- df20[order(df20$批次名称,df20$testTimeFromeBegining),]
running_avg <- function(x, window = 3) {
sapply(seq_along(x), function(i) {
start <- max(1, i - window + 1)
mean(x[start:i],na.rm=TRUE)
})
}
lumping_avg<- function(x) {
sapply(seq_along(x), function(i) {
mean(x[1:i],na.rm=TRUE)
})
}
lumping_sd<- function(x) {
sapply(seq_along(x), function(i) {
sd(x[1:i],na.rm=TRUE)
})
}
df20$浓度1<-as.numeric(df20$浓度1)
df20$C值<-as.numeric(df20$C值)
df20$T值<-as.numeric(df20$T值)
df20$ToverC值<-df20$T值/df20$C值
df20$ToverC值[df20$是否有效==0]<-NA
summary(as.numeric(df20$结论))
summary(df20$浓度1)
summary(df20$ToverC值)
summary(df20$testTimeFromeBegining)
colnames(df20)
df20 <- df20[order(df20$testTimeFromeBegining),]
df20 <- df20 %>% group_by(批次名称) %>% transform(
浓度1移动均值 = running_avg(浓度1,20),
C值移动均值 = running_avg(C值,20),
T值移动均值 = running_avg(T值,20),
ToverC值移动均值 = running_avg(ToverC值,20),
结论移动均值 = running_avg(结论,20)
)
# df20$浓度1移动均值<-running_avg(df20$浓度1, 20)
# df20$C值移动均值<-running_avg(df20$C值, 20)
# df20$T值移动均值<-running_avg(df20$T值, 20)
# df20$ToverC值移动均值<-running_avg(df20$ToverC值, 20)
# df20$结论移动均值<-running_avg(df20$结论, 20)
df20$浓度1累计均值<-lumping_avg(df20$浓度1)
df20$C值累计均值<-lumping_avg(df20$C值)
df20$T值累计均值<-lumping_avg(df20$T值)
df20$ToverC值累计均值<-lumping_avg(df20$ToverC值)
df20$结论累计均值<-lumping_avg(df20$结论)
# df20$浓度1累计标差<-lumping_sd(df20$浓度1)
# df20$C值累计标差<-lumping_sd(df20$C值)
# df20$T值累计标差<-lumping_sd(df20$T值)
# df20$ToverC值累计标差<-lumping_sd(df20$ToverC值)
# df20$结论累计标差<-lumping_sd(df20$结论移动均值)
df20$浓度1累计标差<-lumping_sd(df20$浓度1移动均值)
df20$C值累计标差<-lumping_sd(df20$C值移动均值)
df20$T值累计标差<-lumping_sd(df20$T值移动均值)
df20$ToverC值累计标差<-lumping_sd(df20$ToverC值移动均值)
df20$结论累计标差<-lumping_sd(df20$结论移动均值)
df20$浓度1允许波动范围<-df20$浓度1累计均值+2*df20$浓度1累计标差
df20$C值允许波动范围<-df20$C值累计均值+2*df20$C值累计标差
df20$T值允许波动范围<-df20$T值累计均值+2*df20$T值累计标差
df20$ToverC值允许波动范围<-df20$ToverC值累计均值+2*df20$ToverC值累计标差
df20$结论允许波动范围<-df20$结论累计均值+2*df20$结论累计标差
summary(df20$浓度1移动均值)
summary(df20$running_avg)
summary(df20$浓度1累计均值)
summary(df20$浓度1累计标差)
summary(df20$结论累计均值)
dfByDayAndLocation <- df20 %>% group_by(testDay,testMonth,省市编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
)
dfByDayAndLocation$阳性率<-dfByDayAndLocation$阳性数/dfByDayAndLocation$有效数
dfByDayAndLocation$有效率<-dfByDayAndLocation$有效数/dfByDayAndLocation$测试数
dfByDayAndLocation$阳性数<-as.integer(dfByDayAndLocation$阳性数)
dfByDayAndLocation$测试数<-as.integer(dfByDayAndLocation$测试数)
dfByDayAndLocation$有效数<-as.integer(dfByDayAndLocation$有效数)
dfByDayAndLocation <- dfByDayAndLocation[order(dfByDayAndLocation$testDay),]
lastDay<-last(dfByDayAndLocation$testDay)
dfByDayAndLocation<-dfByDayAndLocation[lastDay-dfByDayAndLocation$testDay<=21,]
dfByMonthAndLocation <- df20 %>% group_by(testMonth,省市编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
)
dfByMonthAndLocation$阳性率<-dfByMonthAndLocation$阳性数/dfByMonthAndLocation$有效数
dfByMonthAndLocation$有效率<-dfByMonthAndLocation$有效数/dfByMonthAndLocation$测试数
dfByMonthAndLocation$阳性数<-as.integer(dfByMonthAndLocation$阳性数)
dfByMonthAndLocation$测试数<-as.integer(dfByMonthAndLocation$测试数)
dfByMonthAndLocation$有效数<-as.integer(dfByMonthAndLocation$有效数)
dfByMonthAndLocation <- dfByMonthAndLocation[order(dfByMonthAndLocation$testMonth),]
dfByMonth <- df20 %>% group_by(testMonth) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
区域数=length(unique(省市编号))
)
dfByMonth$阳性率<-dfByMonth$阳性数/dfByMonth$有效数
dfByMonth$有效率<-dfByMonth$有效数/dfByMonth$测试数
dfByMonth$阳性数<-as.integer(dfByMonth$阳性数)
dfByMonth$测试数<-as.integer(dfByMonth$测试数)
dfByMonth$有效数<-as.integer(dfByMonth$有效数)
dfByMonth$区域数<-as.integer(dfByMonth$区域数)
dfByMonth <- dfByMonth[order(dfByMonth$testMonth),]
dfBy区域 <- df20 %>% group_by(省市编号) %>% summarise(
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
区域开始 = min(testTimeFromeBegining,na.rm = TRUE),
区域截止 = max(testTimeFromeBegining,na.rm = TRUE)
)
dfBy区域$阳性率<-dfBy区域$阳性数/dfBy区域$有效数
dfBy区域$有效率<-dfBy区域$有效数/dfBy区域$测试数
dfBy区域$阳性数<-as.integer(dfBy区域$阳性数)
dfBy区域$测试数<-as.integer(dfBy区域$测试数)
dfBy区域$有效数<-as.integer(dfBy区域$有效数)
dfBy批次 <- df20 %>% group_by(批次名称) %>% summarise(
仪器数=length(unique(仪器序列号)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
批次开始 = min(testTimeFromeBegining,na.rm = TRUE),
批次截止 = max(testTimeFromeBegining,na.rm = TRUE),
区域数=length(unique(省市编号))
)
dfBy批次$阳性率<-dfBy批次$阳性数/dfBy批次$有效数
dfBy批次$有效率<-dfBy批次$有效数/dfBy批次$测试数
dfBy批次$阳性数<-as.integer(dfBy批次$阳性数)
dfBy批次$测试数<-as.integer(dfBy批次$测试数)
dfBy批次$有效数<-as.integer(dfBy批次$有效数)
dfBy批次$区域数<-as.integer(dfBy批次$区域数)
dfBy仪器 <- df20 %>% group_by(仪器序列号) %>% summarise(
批次数=length(unique(批次名称)),
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
批次开始 = min(testTimeFromeBegining,na.rm = TRUE),
批次截止 = max(testTimeFromeBegining,na.rm = TRUE),
区域数=length(unique(省市编号))
)
dfBy仪器$阳性率<-dfBy仪器$阳性数/dfBy仪器$有效数
dfBy仪器$有效率<-dfBy仪器$有效数/dfBy仪器$测试数
dfBy仪器$阳性数<-as.integer(dfBy仪器$阳性数)
dfBy仪器$测试数<-as.integer(dfBy仪器$测试数)
dfBy仪器$有效数<-as.integer(dfBy仪器$有效数)
dfBy仪器$区域数<-as.integer(dfBy仪器$区域数)
dfByDayAndLocation测试数<-cbind("测试数",dfByDayAndLocation[,c(1:3,4)])
dfByDayAndLocation有效数<-cbind("有效数",dfByDayAndLocation[,c(1:3,6)])
dfByDayAndLocation阳性数<-cbind("阳性数",dfByDayAndLocation[,c(1:3,5)])
colnames(dfByDayAndLocation测试数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation有效数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation阳性数)<-c("group","Day","Month", "省市编号", "count")
dfByDayAndLocationNumber<-rbind(rbind(dfByDayAndLocation测试数,dfByDayAndLocation有效数),dfByDayAndLocation阳性数)
#dfByDayAndLocationNumber$省市编号<-str_c("省市编号: ",dfByDayAndLocationNumber$省市编号)
dfByDayNumber <- dfByDayAndLocationNumber %>% group_by(group,Day,Month) %>% summarise(
count=sum(count,na.rm = TRUE))
dfByDayAndLocation <- df20 %>% group_by(testDay,testMonth,省市编号) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
)
dfByDayAndLocation$阳性率<-dfByDayAndLocation$阳性数/dfByDayAndLocation$有效数
dfByDayAndLocation$有效率<-dfByDayAndLocation$有效数/dfByDayAndLocation$测试数
dfByDayAndLocation$阳性数<-as.integer(dfByDayAndLocation$阳性数)
dfByDayAndLocation$测试数<-as.integer(dfByDayAndLocation$测试数)
dfByDayAndLocation$有效数<-as.integer(dfByDayAndLocation$有效数)
dfByDayAndLocation <- dfByDayAndLocation[order(dfByDayAndLocation$testDay),]
lastDay<-last(dfByDayAndLocation$testDay)
dfByDayAndLocation<-dfByDayAndLocation[lastDay-dfByDayAndLocation$testDay<=21,]
dfByDay <- df20 %>% group_by(testMonth,testDay) %>% summarise(
测试数 = n(),
阳性数=sum(结论,na.rm = TRUE),
有效数=sum(是否有效,na.rm = TRUE),
仪器数=length(unique(仪器序列号)),
批次数=length(unique(批次名称)),
区域数=length(unique(省市编号))
)
dfByDay$阳性率<-dfByDay$阳性数/dfByDay$有效数
dfByDay$有效率<-dfByDay$有效数/dfByDay$测试数
dfByDay$阳性数<-as.integer(dfByDay$阳性数)
dfByDay$测试数<-as.integer(dfByDay$测试数)
dfByDay$有效数<-as.integer(dfByDay$有效数)
dfByDay$区域数<-as.integer(dfByDay$区域数)
dfByDay <- dfByDay[order(dfByDay$testDay),]
dfByDay<-dfByDay[lastDay-dfByDay$testDay<=21,]
dfByDayAndLocation测试数<-cbind("测试数",dfByDayAndLocation[,c(1:3,4)])
dfByDayAndLocation有效数<-cbind("有效数",dfByDayAndLocation[,c(1:3,6)])
dfByDayAndLocation阳性数<-cbind("阳性数",dfByDayAndLocation[,c(1:3,5)])
colnames(dfByDayAndLocation测试数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation有效数)<-c("group","Day","Month", "省市编号", "count")
colnames(dfByDayAndLocation阳性数)<-c("group","Day","Month", "省市编号", "count")
dfByDayAndLocationNumber<-rbind(rbind(dfByDayAndLocation测试数,dfByDayAndLocation有效数),dfByDayAndLocation阳性数)
#dfByDayAndLocationNumber$省市编号<-str_c("省市编号: ",dfByDayAndLocationNumber$省市编号)
dfByDayNumber <- dfByDayAndLocationNumber %>% group_by(group,Day,Month) %>% summarise(
count=sum(count,na.rm = TRUE))
dfByDayAndLocation有效率<-cbind("有效率",dfByDayAndLocation[,c(1,2,3,10)])
dfByDayAndLocation阳性率<-cbind("阳性率",dfByDayAndLocation[,c(1,2,3,9)])
colnames(dfByDayAndLocation有效率)<-c("group","Day","Month", "省市编号", "Ratio")
colnames(dfByDayAndLocation阳性率)<-c("group","Day","Month", "省市编号", "Ratio")
dfByDayAndLocationRatio<-rbind(dfByDayAndLocation有效率,dfByDayAndLocation阳性率)
#dfByDayAndLocationRatio$省市编号<-str_c("省市编号: ",dfByDayAndLocationRatio$省市编号)
dfByDay有效率<-cbind("有效率",dfByDay[,c(1,2,10)])
dfByDay阳性率<-cbind("阳性率",dfByDay[,c(1,2,9)])
colnames(dfByDay有效率)<-c("group","Month","Day","Ratio")
colnames(dfByDay阳性率)<-c("group","Month","Day","Ratio")
dfByDayRatio<-rbind(dfByDay有效率,dfByDay阳性率)
dfByDayAndLocation仪器数<-cbind("仪器数",dfByDayAndLocation[,c(1,2,3,7)])
dfByDayAndLocation批次数<-cbind("批次数",dfByDayAndLocation[,c(1,2,3,8)])
colnames(dfByDayAndLocation仪器数)<-c("group","Day","Month", "省市编号", "Count")
colnames(dfByDayAndLocation批次数)<-c("group","Day","Month", "省市编号", "Count")
dfByDayAndLocationCount<-rbind(dfByDayAndLocation仪器数,dfByDayAndLocation批次数)
#dfByDayAndLocationCount$省市编号<-str_c("省市编号: ",dfByDayAndLocationCount$省市编号)
dfByDay仪器数<-cbind("仪器数",dfByDay[,c(1,2,6)])
dfByDay批次数<-cbind("批次数",dfByDay[,c(1,2,7)])
dfByDay区域数<-cbind("区域数",dfByDay[,c(1,2,8)])
colnames(dfByDay仪器数)<-c("group","Month","Day","count")
colnames(dfByDay批次数)<-c("group","Month","Day","count")
colnames(dfByDay区域数)<-c("group","Month","Day","count")
dfByDayCount<-rbind(rbind(dfByDay仪器数,dfByDay批次数),dfByDay区域数)
dfByMonthAndLocation测试数<-cbind("测试数",dfByMonthAndLocation[,c(1,2,3)])
dfByMonthAndLocation有效数<-cbind("有效数",dfByMonthAndLocation[,c(1,2,5)])
dfByMonthAndLocation阳性数<-cbind("阳性数",dfByMonthAndLocation[,c(1,2,4)])
colnames(dfByMonthAndLocation测试数)<-c("group","month","省市编号", "count")
colnames(dfByMonthAndLocation有效数)<-c("group","month","省市编号", "count")
colnames(dfByMonthAndLocation阳性数)<-c("group","month","省市编号", "count")
dfByMonthAndLocationNumber<-rbind(rbind(dfByMonthAndLocation测试数,dfByMonthAndLocation有效数),dfByMonthAndLocation阳性数)
#dfByMonthAndLocationNumber$省市编号<-str_c("省市编号: ",dfByMonthAndLocationNumber$省市编号)
dfByMonthNumber <- dfByMonthAndLocationNumber %>% group_by(group,month) %>% summarise(
count=sum(count,na.rm = TRUE))
dfByMonthAndLocation有效率<-cbind("有效率",dfByMonthAndLocation[,c(1,2,9)])
dfByMonthAndLocation阳性率<-cbind("阳性率",dfByMonthAndLocation[,c(1,2,8)])
colnames(dfByMonthAndLocation有效率)<-c("group","month","省市编号", "Ratio")
colnames(dfByMonthAndLocation阳性率)<-c("group","month","省市编号", "Ratio")
dfByMonthAndLocationRatio<-rbind(dfByMonthAndLocation有效率,dfByMonthAndLocation阳性率)
#dfByMonthAndLocationRatio$省市编号<-str_c("省市编号: ",dfByMonthAndLocationRatio$省市编号)
dfByMonth有效率<-cbind("有效率",dfByMonth[,c(1,9)])
dfByMonth阳性率<-cbind("阳性率",dfByMonth[,c(1,8)])
colnames(dfByMonth有效率)<-c("group","month","Ratio")
colnames(dfByMonth阳性率)<-c("group","month","Ratio")
dfByMonthRatio<-rbind(dfByMonth有效率,dfByMonth阳性率)
dfByMonthAndLocation仪器数<-cbind("仪器数",dfByMonthAndLocation[,c(1,2,6)])
dfByMonthAndLocation批次数<-cbind("批次数",dfByMonthAndLocation[,c(1,2,7)])
colnames(dfByMonthAndLocation仪器数)<-c("group","month","省市编号", "Count")
colnames(dfByMonthAndLocation批次数)<-c("group","month","省市编号", "Count")
dfByMonthAndLocationCount<-rbind(dfByMonthAndLocation仪器数,dfByMonthAndLocation批次数)
#dfByMonthAndLocationCount$省市编号<-str_c("省市编号: ",dfByMonthAndLocationCount$省市编号)
dfByMonth仪器数<-cbind("仪器数",dfByMonth[,c(1,5)])
dfByMonth批次数<-cbind("批次数",dfByMonth[,c(1,6)])
dfByMonth区域数<-cbind("区域数",dfByMonth[,c(1,7)])
colnames(dfByMonth仪器数)<-c("group","month","count")
colnames(dfByMonth批次数)<-c("group","month","count")
colnames(dfByMonth区域数)<-c("group","month","count")
dfByMonthCount<-rbind(rbind(dfByMonth仪器数,dfByMonth批次数),dfByMonth区域数)
dfby区域Number <- dfByMonthAndLocationNumber %>% group_by(group,省市编号) %>% summarise(
count=sum(count,na.rm = TRUE))
dfBy区域有效率<-cbind("有效率",dfBy区域[,c(1,10)])
dfBy区域阳性率<-cbind("阳性率",dfBy区域[,c(1,9)])
colnames(dfBy区域有效率)<-c("group","区域","Ratio")
colnames(dfBy区域阳性率)<-c("group","区域","Ratio")
dfBy区域Ratio<-rbind(dfBy区域有效率,dfBy区域阳性率)
#dfBy区域Ratio$区域<-str_c("省市编号: ",dfBy区域Ratio$区域)
dfBy区域仪器数<-cbind("仪器数",dfBy区域[,c(1,2)])
dfBy区域批次数<-cbind("批次数",dfBy区域[,c(1,3)])
colnames(dfBy区域仪器数)<-c("group","区域","count")
colnames(dfBy区域批次数)<-c("group","区域","count")
dfBy区域Count<-rbind(dfBy区域仪器数,dfBy区域批次数)
#dfBy区域Count$区域<-str_c("省市编号: ",dfBy区域Count$区域)
dfBy区域开始<-cbind("区域开始",dfBy区域[,c(1,7)])
dfBy区域截止<-cbind("区域截止",dfBy区域[,c(1,8)])
colnames(dfBy区域开始)<-c("group","区域","time")
colnames(dfBy区域截止)<-c("group","区域","time")
dfBy区域time<-rbind(dfBy区域开始,dfBy区域截止)
#dfBy区域time$区域<-str_c("省市编号: ",dfBy区域time$区域)
dfBy批次测试数<-cbind("测试数",dfBy批次[,c(1,3)])
dfBy批次有效数<-cbind("有效数",dfBy批次[,c(1,5)])
dfBy批次阳性数<-cbind("阳性数",dfBy批次[,c(1,4)])
colnames(dfBy批次测试数)<-c("group","批次","count")
colnames(dfBy批次有效数)<-c("group","批次","count")
colnames(dfBy批次阳性数)<-c("group","批次","count")
dfBy批次Number<-rbind(dfBy批次测试数,rbind(dfBy批次有效数,dfBy批次阳性数))
dfBy批次有效率<-cbind("有效率",dfBy批次[,c(1,10)])
dfBy批次阳性率<-cbind("阳性率",dfBy批次[,c(1,9)])
colnames(dfBy批次有效率)<-c("group","批次","Ratio")
colnames(dfBy批次阳性率)<-c("group","批次","Ratio")
dfBy批次Ratio<-rbind(dfBy批次有效率,dfBy批次阳性率)
dfBy批次仪器数<-cbind("仪器数",dfBy批次[,c(1,2)])
dfBy批次区域数<-cbind("区域数",dfBy批次[,c(1,8)])
colnames(dfBy批次仪器数)<-c("group","批次","count")
colnames(dfBy批次区域数)<-c("group","批次","count")
dfBy批次Count<-rbind(dfBy批次仪器数,dfBy批次区域数)
dfBy批次开始<-cbind("批次开始",dfBy批次[,c(1,6)])
dfBy批次截止<-cbind("批次截止",dfBy批次[,c(1,7)])
colnames(dfBy批次开始)<-c("group","批次","time")
colnames(dfBy批次截止)<-c("group","批次","time")
dfBy批次time<-rbind(dfBy批次开始,dfBy批次截止)
dfBy仪器测试数<-cbind("测试数",dfBy仪器[,c(1,3)])
dfBy仪器有效数<-cbind("有效数",dfBy仪器[,c(1,5)])
dfBy仪器阳性数<-cbind("阳性数",dfBy仪器[,c(1,4)])
colnames(dfBy仪器测试数)<-c("group","仪器","count")
colnames(dfBy仪器有效数)<-c("group","仪器","count")
colnames(dfBy仪器阳性数)<-c("group","仪器","count")
dfBy仪器Number<-rbind(dfBy仪器测试数,rbind(dfBy仪器有效数,dfBy仪器阳性数))
dfBy仪器有效率<-cbind("有效率",dfBy仪器[,c(1,10)])
dfBy仪器阳性率<-cbind("阳性率",dfBy仪器[,c(1,9)])
colnames(dfBy仪器有效率)<-c("group","仪器","Ratio")
colnames(dfBy仪器阳性率)<-c("group","仪器","Ratio")
dfBy仪器Ratio<-rbind(dfBy仪器有效率,dfBy仪器阳性率)
dfBy仪器批次数<-cbind("批次数",dfBy仪器[,c(1,2)])
dfBy仪器区域数<-cbind("区域数",dfBy仪器[,c(1,8)])
colnames(dfBy仪器批次数)<-c("group","仪器","count")
colnames(dfBy仪器区域数)<-c("group","仪器","count")
dfBy仪器Count<-rbind(dfBy仪器批次数,dfBy仪器区域数)
dfBy仪器开始<-cbind("仪器开始",dfBy仪器[,c(1,6)])
dfBy仪器截止<-cbind("仪器截止",dfBy仪器[,c(1,7)])
colnames(dfBy仪器开始)<-c("group","仪器","time")
colnames(dfBy仪器截止)<-c("group","仪器","time")
dfBy仪器time<-rbind(dfBy仪器开始,dfBy仪器截止)
dfBy区域top4<-dfBy区域$省市编号[order(-dfBy区域$测试数)][1:4]
dfBy区域top4<-dfBy区域top4[!is.na(dfBy区域top4)]
dfBy批次top4<-dfBy批次$批次名称[order(-dfBy批次$测试数)][1:4]
dfBy批次top4<-dfBy批次top4[!is.na(dfBy批次top4)]
dfBy仪器top4<-dfBy仪器$仪器序列号[order(-dfBy仪器$测试数)][1:4]
dfBy仪器top4<-dfBy仪器top4[!is.na(dfBy仪器top4)]
df20Top4区域<-df20[df20$省市编号 %in% dfBy区域top4,]
df20Top4批次<-df20[df20$批次名称 %in% dfBy批次top4,]
df20Top4仪器<-df20[df20$仪器序列号 %in% dfBy仪器top4,]
df20Top4区域$省市编号<-factor(df20Top4区域$省市编号,levels = dfBy区域top4)
df20Top4批次$批次名称<-factor(df20Top4批次$批次名称,levels = dfBy批次top4)
df20Top4仪器$仪器序列号<-factor(df20Top4仪器$仪器序列号,levels = dfBy仪器top4)
dfByDayAndLocationNumber<-dfByDayAndLocationNumber[dfByDayAndLocationNumber$省市编号 %in% dfBy区域top4,]
dfByDayAndLocationNumber$省市编号<-factor(dfByDayAndLocationNumber$省市编号,levels = dfBy区域top4)
dfByDayAndLocationCount<-dfByDayAndLocationCount[dfByDayAndLocationCount$省市编号 %in% dfBy区域top4,]
dfByDayAndLocationCount$省市编号<-factor(dfByDayAndLocationCount$省市编号,levels = dfBy区域top4)
dfByDayAndLocationRatio<-dfByDayAndLocationRatio[dfByDayAndLocationRatio$省市编号 %in% dfBy区域top4,]
dfByDayAndLocationRatio$省市编号<-factor(dfByDayAndLocationRatio$省市编号,levels = dfBy区域top4)
dfByMonthAndLocationRatio<-dfByMonthAndLocationRatio[dfByMonthAndLocationRatio$省市编号 %in% dfBy区域top4,]
dfByMonthAndLocationRatio$省市编号<-factor(dfByMonthAndLocationRatio$省市编号,levels = dfBy区域top4)
dfByMonthAndLocationCount<-dfByMonthAndLocationCount[dfByMonthAndLocationCount$省市编号 %in% dfBy区域top4,]
dfByMonthAndLocationCount$省市编号<-factor(dfByMonthAndLocationCount$省市编号,levels = dfBy区域top4)
dfByMonthAndLocationNumber<-dfByMonthAndLocationNumber[dfByMonthAndLocationNumber$省市编号 %in% dfBy区域top4,]
dfByMonthAndLocationNumber$省市编号<-factor(dfByMonthAndLocationNumber$省市编号,levels = dfBy区域top4)
#dfByDayNumber1<-dfByDayNumber[dfByDayNumber$Month=="2024-09",]
plotdfByDayNumber<-ggplot(dfByDayNumber, aes(x = Day, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "最后三周按日测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByDayNumber
plotdfByDayLocationNumber<-ggplot(dfByDayAndLocationNumber, aes(x = Day, y = count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "最后三周按日按地区测试统计",
x = "测试时间",
y = "数值统计",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByDayLocationNumber
plotdfByDayRatio<-ggplot(dfByDayRatio, aes(x = Day, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=Ratio),vjust=1.6,size=1,color="white")+
labs(
title = "最后三周按日测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByDayRatio
plotdfByDayLocationRatio<-ggplot(dfByDayAndLocationRatio, aes(x = Day, y = Ratio, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "最后三周按日按地区测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByDayLocationRatio
plotdfByDayCount<-ggplot(dfByDayCount, aes(x = Day, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "最后三周按日测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByDayCount
plotdfByDayLocationCount<-ggplot(dfByDayAndLocationCount, aes(x = Day, y = Count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = Count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "最后三周按日按地区统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByDayLocationCount
plotdfByMonthNumber<-ggplot(dfByMonthNumber, aes(x = month, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = "每月测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByMonthNumber
plotdfByMonthLocationNumber<-ggplot(dfByMonthAndLocationNumber, aes(x = month, y = count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "每月分区测试统计",
x = "测试时间",
y = "数值统计",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByMonthLocationNumber
plotdfByMonthRatio<-ggplot(dfByMonthRatio, aes(x = month, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=Ratio),vjust=1.6,size=1,color="white")+
labs(
title = "每月测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByMonthRatio
plotdfByMonthLocationRatio<-ggplot(dfByMonthAndLocationRatio, aes(x = month, y = Ratio, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "每月分区测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByMonthLocationRatio
plotdfByMonthCount<-ggplot(dfByMonthCount, aes(x = month, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "每月测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfByMonthCount
plotdfByMonthLocationCount<-ggplot(dfByMonthAndLocationCount, aes(x = month, y = Count, fill = group)) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = Count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "每月分区测试统计",
x = "测试时间",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotdfByMonthLocationCount
plotdfby区域Number<-ggplot(dfby区域Number, aes(x = 省市编号, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "分区测试统计",
x = "测试区域",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfby区域Number
plotdfBy区域Ratio<-ggplot(dfBy区域Ratio, aes(x = 区域, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "分区测试统计",
x = "测试区域",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy区域Ratio
plotdfBy区域Count<-ggplot(dfBy区域Count, aes(x = 区域, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "分区测试统计",
x = "测试区域",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy区域Count
if(FALSE) {
plotdfBy区域timeBox <- ggplot(df20, aes(x=省市编号, y=testDay,color=省市编号)) +
geom_boxplot(show.legend = FALSE)+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "分区测试时间统计",
x = "测试区域",
y = "测试时间",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy区域timeBox
}
plotdfBy批次Number<-ggplot(dfBy批次Number, aes(x = 批次, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
labs(
title = "试剂分批测试统计",
x = "测试批次",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次Number
plotdfBy批次Ratio<-ggplot(dfBy批次Ratio, aes(x = 批次, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "试剂分批测试统计",
x = "测试批次",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次Ratio
plotdfBy批次Count<-ggplot(dfBy批次Count, aes(x = 批次, y = count, fill = group)) +
# geom_bar(stat="identity",区域
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.6, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "试剂分批测试统计",
x = "测试批次",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次Count
plotdfBy批次timeBox <- ggplot(df20, aes(x=批次名称, y=testDay,color=批次名称)) +
geom_boxplot(show.legend = FALSE)+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "试剂分批时间统计",
x = "批次名称",
y = "测试时间",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy批次timeBox
plotdfBy仪器Number<-ggplot(dfBy仪器Number, aes(x = 仪器, y = count, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red", "blue","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.4, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 1.2 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "仪器测试统计",
x = "测试仪器",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "blue","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器Number
plotdfBy仪器Ratio<-ggplot(dfBy仪器Ratio, aes(x = 仪器, y = Ratio, fill = group)) +
# geom_bar(stat="identity",
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = round(Ratio,2)), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
labs(
title = "仪器测试统计",
x = "测试仪器",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red","green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器Ratio
plotdfBy仪器Count<-ggplot(dfBy仪器Count, aes(x = 仪器, y = count, fill = group)) +
# geom_bar(stat="identity",区域
# position = position_dodge()
# ) +
geom_col(
position = position_dodge(width = 0.4), # 控制条间距
width = 0.7 # 条宽度
) +
geom_line(
aes(group = group, color = group),
position = position_dodge(width = 0.4),
size = 1,
linetype="dashed",
show.legend=FALSE,
alpha = 1.0
) +
scale_color_manual(values = c("red","green")) + # 自定义颜色
# geom_point(
# aes(color = group),
# position = position_dodge(width = 0.4),
# size = 3
# ) +
geom_text(
aes(label = count), # 标签内容
position = position_dodge(width = 0.4), # 与柱子位置一致
vjust = -0.8, # 垂直位置(负值向上)
color = "black", # 标签颜色
size = 2.0 # 字体大小
) +
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "仪器测试统计",
x = "测试仪器",
y = "统计数值",
fill = ""
) +
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器Count
plotdfBy仪器timeBox <- ggplot(df20, aes(x=仪器序列号, y=testDay,color=仪器序列号)) +
geom_boxplot(show.legend = FALSE)+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "仪器测试时间统计",
x = "仪器名称/序列号",
y = "测试时间",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotdfBy仪器timeBox
plot浓度1批次Box <- ggplot(df20, aes(x=批次名称, y=浓度1,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "浓度与试剂批次关系统计",
x = "批次名称",
y = "浓度1",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot浓度1批次Box
plot浓度1仪器Box <- ggplot(df20, aes(x=仪器序列号, y=浓度1,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "浓度与仪器关系统计",
x = "仪器名称/序列号",
y = "浓度1",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot浓度1仪器Box
plotC值批次Box <- ggplot(df20, aes(x=批次名称, y=C值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "C值与试剂批次关系统计",
x = "批次名称",
y = "C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotC值批次Box
plotC值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=C值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "C值与仪器关系统计",
x = "仪器名称/序列号",
y = "C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotC值仪器Box
plotT值批次Box <- ggplot(df20, aes(x=批次名称, y=T值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T值与试剂批次关系统计",
x = "批次名称",
y = "T值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotT值批次Box
plotT值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=T值,color=省市编号)) +
geom_boxplot()+
scale_y_log10()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T值与仪器关系统计",
x = "仪器名称/序列号",
y = "T值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotT值仪器Box
plotToverC值批次Box <- ggplot(df20, aes(x=批次名称, y=ToverC值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T/C值与试剂批次关系统计",
x = "批次名称",
y = "T/C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotToverC值批次Box
plotToverC值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=ToverC值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "T/C值与仪器关系统计",
x = "仪器名称/序列号",
y = "T/C值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plotToverC值仪器Box
plot结论移动均值批次Box <- ggplot(df20, aes(x=批次名称, y=结论移动均值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "阳性率与试剂批次关系统计",
x = "批次名称",
y = "结论移动均值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot结论移动均值批次Box
plot结论移动均值仪器Box <- ggplot(df20, aes(x=仪器序列号, y=结论移动均值,color=省市编号)) +
geom_boxplot()+
# geom_text(aes(label=count),vjust=1.6,size=1,color="white")+
labs(
title = "阳性率与仪器关系统计",
x = "仪器名称/序列号",
y = "结论移动均值",
fill = ""
) +
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
legend.position = "right")
plot结论移动均值仪器Box
xmin<-min(df20$testDay)
xmax<-max(df20$testDay)
ymax<-max(6,quantile(df20$浓度1,probs = 0.95, # 要计算的百分位0-1之间
na.rm = TRUE))
plot浓度1by批次 <- ggplot(df20)+geom_point(aes(testDay, 浓度1,color=as.character(批次名称)))+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "浓度", # 主标题
x = "测试日期", # X轴标签
y = "浓度1", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot浓度1by批次
plot浓度1批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "浓度与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1批次
plot浓度1by省市编号 <- ggplot(df20)+geom_point(aes(testDay, 浓度1,color=as.character(省市编号)))+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "浓度", # 主标题
x = "测试日期", # X轴标签
y = "浓度1", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot浓度1by省市编号
plot浓度1省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "浓度与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1省市编号
ymax<-max(6,quantile(df20$浓度1,probs = 0.95, # 要计算的百分位0-1之间
na.rm = TRUE))
plot浓度1by仪器 <- ggplot(df20)+geom_point(aes(testDay, 浓度1,color=as.character(仪器序列号)))+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "浓度", # 主标题
x = "测试日期", # X轴标签
y = "浓度1", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot浓度1by仪器
plot浓度1仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "浓度与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1仪器
ymax<-max(6,quantile(df20$C值,probs = 0.98, # 要计算的百分位0-1之间
na.rm = TRUE))
plotC值by批次 <- ggplot(df20)+geom_point(aes(testDay, C值,color=as.character(批次名称)))+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
scale_y_log10()+
labs(
title = "C值", # 主标题
x = "测试日期", # X轴标签
y = "C值", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotC值by批次
plotC值批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
scale_y_log10()+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值批次
plotC值by省市编号 <- ggplot(df20)+geom_point(aes(testDay, C值,color=as.character(省市编号)))+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "C值", # 主标题
x = "测试日期", # X轴标签
y = "C值", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotC值by省市编号
plotC值省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值省市编号
plotC值by仪器 <- ggplot(df20)+geom_point(aes(testDay, C值,color=as.character(仪器序列号)))+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "C值", # 主标题
x = "测试日期", # X轴标签
y = "C值", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotC值by仪器
plotC值仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值仪器
ymax<-max(6,quantile(df20$T值,probs = 0.98, # 要计算的百分位0-1之间
na.rm = TRUE))
plotT值by批次 <- ggplot(df20)+geom_point(aes(testDay, T值,color=as.character(批次名称)))+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T值", # 主标题
x = "测试日期", # X轴标签
y = "T值", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotT值by批次
plotT值批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值批次
plotT值by省市编号 <- ggplot(df20)+geom_point(aes(testDay, T值,color=as.character(省市编号)))+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T值", # 主标题
x = "测试日期", # X轴标签
y = "T值", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotT值by省市编号
plotT值省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值省市编号
plotT值by仪器 <- ggplot(df20)+geom_point(aes(testDay, T值,color=as.character(仪器序列号)))+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T值", # 主标题
x = "测试日期", # X轴标签
y = "T值", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotT值by仪器
plotT值仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值仪器
ymax<-max(6,quantile(df20$ToverC值,probs = 0.98, # 要计算的百分位0-1之间
na.rm = TRUE))
plotToverC值by批次 <- ggplot(df20)+geom_point(aes(testDay, ToverC值,color=as.character(批次名称)))+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T/C值", # 主标题
x = "测试日期", # X轴标签
y = "T/C值", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotToverC值by批次
plotToverC值批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T/C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值批次
plotToverC值by省市编号 <- ggplot(df20)+geom_point(aes(testDay, ToverC值,color=as.character(省市编号)))+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T/C值", # 主标题
x = "测试日期", # X轴标签
y = "T/C值", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotToverC值by省市编号
plotToverC值省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T/C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值省市编号
plotToverC值by仪器 <- ggplot(df20)+geom_point(aes(testDay, ToverC值,color=as.character(仪器序列号)))+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "T/C值", # 主标题
x = "测试日期", # X轴标签
y = "T/C值", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plotToverC值by仪器
plotToverC值仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T/C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值仪器
ymax<-1.0
plot结论by批次 <- ggplot(df20)+geom_point(aes(testDay, 是否阳性,color=as.character(批次名称)))+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "结论/阳性率", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率", # Y轴标签
color = "批次名称" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot结论by批次
plot结论批次<-ggplot(df20Top4批次)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "结论/阳性率与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论批次
plot结论by省市编号 <- ggplot(df20)+geom_point(aes(testDay, 是否阳性,color=as.character(省市编号)))+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "结论/阳性率", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率", # Y轴标签
color = "" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot结论by省市编号
plot结论省市编号<-ggplot(df20Top4区域)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "结论/阳性率与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论省市编号
plot结论by仪器 <- ggplot(df20)+geom_point(aes(testDay, 是否阳性,color=as.character(仪器序列号)))+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
xlim(xmin, xmax) + ylim(0, ymax)+theme(legend.position ="right")+
labs(
title = "结论/阳性率", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率", # Y轴标签
color = "仪器序列号" # 图例标题
)+
scale_x_date(
date_labels = "%Y-%m-%d", # 格式符组合
date_breaks = "1 month" # 标签间隔(如 "2 weeks"
)+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 10,face = "bold"),
axis.title.y = element_text(size = 10,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90),
legend.position = "right")
plot结论by仪器
plot结论仪器<-ggplot(df20Top4仪器)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "结论/阳性率与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率" )+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论仪器
df20$结论Outlier<-1
df20$结论Outlier[df20$结论允许波动范围-df20$结论移动均值>0 &
df20$结论移动均值-(df20$结论累计均值-2*df20$结论累计标差)>0]<-0
df20$结论Outlier[is.na(df20$结论累计标差)]<-NA
summary(df20$结论Outlier)
dfBy批次Outlier <- df20 %>% group_by(批次名称) %>% summarise(
outlierCount=sum(结论Outlier,na.rm=TRUE))
dfBy批次Outliertop4<-dfBy批次Outlier$批次名称[order(-dfBy批次Outlier$outlierCount)][1:4]
dfBy批次Outliertop4<-dfBy批次Outliertop4[!is.na(dfBy批次Outliertop4)]
df20Top4批次Outlier<-df20[df20$批次名称 %in% dfBy批次Outliertop4,]
df20Top4批次Outlier$批次名称<-factor(df20Top4批次Outlier$批次名称,levels = dfBy批次Outliertop4)
plot浓度1批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "浓度与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1批次Outlier
plotC值批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值批次Outlier
plotT值批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值批次Outlier
plotToverC值批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "T/C值与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值批次Outlier
plot结论批次Outlier<-ggplot(df20Top4批次Outlier)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 批次名称,ncol=2) +
labs(
title = "结论/阳性率与试剂批次关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论批次Outlier
if(FALSE){
dfBy区域Outlier <- df20 %>% group_by(省市编号) %>% summarise(
outlierCount=sum(结论Outlier,na.rm=TRUE))
dfBy区域Outliertop4<-dfBy区域Outlier$省市编号[order(-dfBy区域Outlier$outlierCount)][1:4]
dfBy区域Outliertop4<-dfBy区域Outliertop4[!is.na(dfBy区域Outliertop4)]
df20Top4区域Outlier<-df20[df20$省市编号 %in% dfBy区域Outliertop4,]
df20Top4区域Outlier$省市编号<-factor(df20Top4区域Outlier$省市编号,levels = dfBy区域Outliertop4)
plot浓度1区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "浓度与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1区域Outlier
plotC值区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值区域Outlier
plotT值区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值区域Outlier
plotToverC值区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "T/C值与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值区域Outlier
plot结论区域Outlier<-ggplot(df20Top4区域Outlier)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 省市编号,ncol=2) +
labs(
title = "结论/阳性率与地域关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论区域Outlier
}
if(FALSE){
dfBy仪器Outlier <- df20 %>% group_by(仪器序列号) %>% summarise(
outlierCount=sum(结论Outlier,na.rm=TRUE))
dfBy仪器Outliertop4<-dfBy仪器Outlier$仪器序列号[order(-dfBy仪器Outlier$outlierCount)][1:4]
dfBy仪器Outliertop4<-dfBy仪器Outliertop4[!is.na(dfBy仪器Outliertop4)]
df20Top4仪器Outlier<-df20[df20$仪器序列号 %in% dfBy仪器Outliertop4,]
df20Top4仪器Outlier$仪器序列号<-factor(df20Top4仪器Outlier$仪器序列号,levels = dfBy仪器Outliertop4)
plot浓度1仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, 浓度1),color="orange")+
geom_line(aes(testDay,浓度1移动均值),color="blue")+
geom_line(aes(testDay,浓度1累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,浓度1允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "浓度与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "浓度1"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot浓度1仪器Outlier
plotC值仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, C值),color="orange")+
geom_line(aes(testDay,C值移动均值),color="blue")+
geom_line(aes(testDay,C值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,C值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotC值仪器Outlier
plotT值仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, T值),color="orange")+
geom_line(aes(testDay,T值移动均值),color="blue")+
geom_line(aes(testDay,T值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,T值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
scale_y_log10()+
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotT值仪器Outlier
plotToverC值仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, ToverC值),color="orange")+
geom_line(aes(testDay,ToverC值移动均值),color="blue")+
geom_line(aes(testDay,ToverC值累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,ToverC值允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "T/C值与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "T/C值"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plotToverC值仪器Outlier
plot结论仪器Outlier<-ggplot(df20Top4仪器Outlier)+geom_point(aes(testDay, 是否阳性),color="orange")+
geom_line(aes(testDay,结论移动均值),color="blue")+
geom_line(aes(testDay,结论累计均值),color="green",linewidth=1.)+
geom_line(aes(testDay,结论允许波动范围),color="red",linewidth=1.)+
facet_wrap( ~ 仪器序列号,ncol=2) +
labs(
title = "结论/阳性率与仪器关系", # 主标题
x = "测试日期", # X轴标签
y = "结论/阳性率"
)+
scale_fill_manual(values = c("red", "green")) + # 自定义颜色
theme_minimal() + theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
axis.title.x = element_text(size = 12,face = "bold"),
axis.title.y = element_text(size = 12,face = "bold"),
axis.text.x = element_text(size = 8, face = "bold",angle=90) ,
panel.border = element_rect(
color = "black", # 边框颜色
size = 1., # 边框粗细
linetype = "solid", # 线型solid/dashed/dotted
fill = NA # 填充色NA为透明
),
legend.position = "right")
plot结论仪器Outlier
}
dev.off()